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bzw. die wörtlich oder sinngemäß entnommenen Stellen als solche kenntlich gemacht

habe.

Martin Panholzer



4



5

Abstract

In this thesis a microscopic method for a quantitative determination of the dynamics of

strongly correlated Fermion systems is developed. We build upon variational ground state

calculations that were carried out in the optimized Jastrow-Feenberg variational method.

Excited states are then treated within the Correlated Basis Functions (CBF) method.

A systematic method to improve the description of the dynamics of a correlated system is

to derive a hierarchy of equations of motions for n-particle-n-hole excitations. This work

contains two important advances of this procedure torwards an accurate ab initio method:

In the first part, the equations of motion for single particle-hole excitations (correlated

time dependent Hartree-Fock (cTDHF) equations) are derived and solved, including ex-

change diagrams. Neglecting exchange diagrams, the theory leads to a random phase

approximation (RPA) in terms of an effective particle-hole interaction Vph. Going be-

yond this, we also include exchange diagrams (“xRPA”); these exchange diagrams can

also be formulated in terms of an effective interaction Vex, which is different from Vph.

Additionally, single particle excitation energies are treated consistently at the correlated

Hatree-Fock level. Furthermore, an energy dependent interaction appears already at the

single particle hole excitation level, which will be derived in the lowest non-vanishing

order.

The second part is concerned with the inclusion of pair excitations in the dynamic

wave function and, consequently, in the equations of motion. These effects are the key for

lowering the collective mode and the roton minimum towards the experimentally observed

values. In particular, the lowering of the roton in two dimensional 3He is very pronounced.

As a consequence the mode reemerges below the particle hole band as sharp excitation

above a certain density. This effect has been seen here for the first time, it has meanwhile

been confirmed experimentally.

Finally these two advancements are combined and applied to 3He in three dimensions.

The agreement with the experiment is excellent and further Fermi systems await explo-

ration.
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Zusammenfassung

In dieser Dissertation wird eine mikroskopische Methode zur quantitativen Bestim-

mung der Dynamik in stark korrelierten Fermi-Systemen entwickelt. Die Theorie baut auf

einer Variations–Grundzustands Rechnung auf, die in der optimierten Jastrow-Feenberg

Variationsmethode ausgeführt wird.

Angeregte Zustände werden demnach in der Correlated Basis Functions (CBF) Meth-

ode behandelt. Eine systematische Methode um die Beschreibung der Dynamik von ko-

rrelierten Systemen zu verbessern wird durch Ableiten einer Hierarchie von Bewegungs-

gleichungen für n–Teilchen–n–Loch Anregungen erreicht. Diese Arbeit enthält zwei

wichtige Verbesserungen dieses Zugangs in Richtung einer präzisen ab initio Methode.

Im ersten Teil werden die Bewegungsgleichungen für ein–Teilchen–ein–Loch Anre-

gungen (correlated time dependent Hartree-Fock (cTDHF) Gleichungen) abgeleitet und

gelöst, insbesondere unter Berücksichtigung der nicht–lokalen Austauschdiagramme. Ver-

nachlässigen der Austauschdiagramme führt auf die Random Phase Approximation (RPA)

mit einer effektiven Teilchen-Loch Wechselwirkung Vph. Darüber hinausgehend, werden

nun auch Austauschdiagramme mitgenommen (“xRPA”); diese können in eine effektive

Wechselwirkung Vex, verschieden zu Vph, zusammengefasst werden. Zusätzlich werden die

ein–Teilchen Anregungsenergien konsistent auf dem korrelierten Hartree–Fock Niveau be-

handelt. Des Weiteren erhält man eine energieabhänginge Wechselwirkung bereits bei

ein-Teilchen ein-Loch Anregungen, welche in der niedrigsten nicht verschwindenden Ord-

nung abgeleitet werden.

Im zweiten Teil werden Paaranregungen in der dynamischen Wellenfunktion und konse-

quenterweise in den Bewegungsgleichungen mitgenommen. Diese Effekte sind der Schlüssel

zum Absenken der kollektiven Mode und des Roton-Minimums in Richtung der experi-

mentell beobachteten Werte. Das Absenken des Rotons in zweidimensionalem 3He ist

stark ausgeprägt. Als Konsequenz taucht die Mode unter dem Teilchen-Loch Band als

scharfe Anregung, ab einer bestimmten Dichte, auf. Dieser Effekt wurde hier zum ersten

Mal beobachtet und mittlerweile experimentell bestätigt.

Zum Abschluss werden diese zwei Verbesserungen kombiniert und auf 3He in drei Di-

mensionen angewandt. Die Übereinstimmung mit dem Experiment ist hervorragend, die

Anwendung auf weitere Fermi-Systeme daher naheliegend.
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Chapter 1

Introduction

Since ancient times a common paradigm has been, that once we know the fundamental

laws of the tiniest building blocks we are able to understand every phenomenon in nature.

This is in principle true. We know the fundamental laws that govern our every day life

(quantum mechanics and electro-dynamics) since the mid of the last century. But we are

far from understanding all the complex behavior of matter, constituted of many particles,

from first principles.[5, 15] Solving the corresponding equations is neither possible nor

desireable, because of the immense number of variables. Furthermore, in most cases we

are not interested in what every particle does, rather we want to predict the new collective

behavior of the system, e.g. which structure it forms or when phase transitions occur or

the elementary excitations of the system. Here, contrary to many other approaches, the

macroscopic behavior is directly calculated from the fundamental laws. More precisely,

we try to find the connection between elementary quantum mechanics and the collective

behavior of the many body system. The difficulty is to find the balance between simplifying

the exact problem and keeping enough flexibility to give quantitative results.

In this thesis the dynamic behavior of the homogeneous 3He liquid at zero temperature

is calculated from nothing else than the bare interaction and quantum mechanics. Helium

is the ideal test ground for such theories:

• At low temperatures it does not solidify, thus forming a quantum liquid.

• It exists in a boson and fermion version, 4He and 3He, respectively. Therefore one

can study the influence of quantum statistics on the many body problem.

• It is one of the most strongly correlated system available in the lab.

As result our theory should be easily applicable to other, less strongly correlated, systems.

Indeed we recently applied it successfully to the electron liquid [8].

9



10 CHAPTER 1. INTRODUCTION

A popular approach to calculate the dynamic behavior of Fermi-systems is the random

phase approximation (RPA)

χ(q, ω) =
χ0(q, ω)

1 − Vp−h(q)χ0(q, ω)
. (1.1)

where χ0 is the density response of the non interacting system [37] and Vp−h is a suit-

able effective interaction (more on that later). There are different ways to derive the

RPA. Most closely related to our work is the derivation via time-dependent Hartree-Fock

theory[28, 29, 40] (TDHF). In doing so, one recognizes that the direct or bare interaction

enters the equation. This makes only sense for weakly interacting systems. If the inter-

action is stronger, as for constituents like helium, the Fourier-transform does not exist.

In addition, even for existing (in q-space) but strong interactions this procedure gives

results which are far from reality. The reason is that the effective interaction between two

particles in the liquid is different from the bare interaction. But how to obtain this effec-

tive interaction? The first way is to use certain exact properties of the dynamic structure

function, i.e. sumrules, and choose the interaction such that these are fullfiled. This has

the advantage that it can be simply implemented, but the disadvantage that it is difficult

to improve upon that. The second is to determine the effective interaction from a micro-

scopic calculation[31]. (Microscopic means determined from nothing else than the bare

interaction.) At the beginning this approach is related with more work in order to derive

a formulation analogue to the RPA, but we are able to improve the result by successive

abolition of critical approximations. We choose the second approach in this work.

1.1 Static or ground state properties

In this thesis the properties of a many fermion system at zero temperature are studied.

Quantum mechanically this means we are concerned with the ground state and the low

energy excitations of the many body problem. We start with a discusion of the ground

state.

An important parameter is the number density ρ = N
V

. Starting at low density the

interaction can usually be neglected and the properties of the system are dominated by

the Fermi statistics1. This means the energy per particle is

E

N
=

3

5
EF =

3

5

~
2(3π2ρ)2/3

2m
(1.2)

1This is only true for short ranged interactions like hard–core potentials. For the electron gas, which is

the basic example for long ranged interaction, the situation is reversed. For small density the interaction

is more important than the kinetic energy from the Fermi statistics.
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Figure 1.1: A sketch of E(ρ) for a typical selfbonded system. For details see text.

in 3 dimensions. In this regime the system is not self bound since the slope of E/N(ρ) is

positive. This implies the system would expand if it is not confined.

The one particle density defined as

ρ(r) = 〈Ψ0| ρ̂(r) |Ψ0〉 = ρ (1.3)

is constant in the whole volume. If one increases the density of the system, something

astonishing will happen: suddenly the particles condense to a dense droplet occupying only

a fraction of the volume, if the system is self bound.2 This situation is visualized in figure

1.1. The system is only stable in the state with lowest energy. Thus the homogeneous Fermi

gas is only metastable if a system is self bound. Also, there is no continuous transition from

the Fermi gas to the strongly correlated Fermi fluid. This is the reason why perturbation

theory has to fail in describing such systems.

Fermi-Hyper-Netted-Chain (FHNC) calculations [33] for the fluid state yield very good

results for the static properties, which are input to the calculations in this thesis. Fur-

thermore, the self–consistent calculations converge only down to a certain value of the

density, i.e. where the compressibility becomes negative. This indicates the approach of a

spinodal point. Also indicated in figure 1.1 is the phase transition to the solid. Close to

this transition the particles become strongly correlated. The strength of the correlations

become visible in the pair distribution function which is defined for the homogen system

2It depends on the interaction of the system whether it is self bounded or not. 3He and 4He are self

bounded.
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Figure 1.2: The pair distribution and the static structure function for three dimensional
3He at saturation density compared with experiment by Achter and Meyer [1] and

Hallock [24] and Diffustion Monte Carlo (DMC) calculations [11].

as

g(|r1 − r2|) =
N(N − 1)

ρ2

∫
d3r3 . . . d

3rN |Ψ(r1, . . . , rn)|
2 (1.4)

where Ψ(r1, . . . , rn) is the ground state wave function. The pair distribution function

describes the probability of finding a particle in r2 if there is one in r1. A rough measure

for the importance of correlations or the vicinity of the phase transition to the solid state

is the height and the sharpness of the first peak, see right pane in figure 1.2. The position

of the peak is the nearest neighbor distance. The position of the second peak is the next

nearest neighbor distance. For a fluid this one is broader than the first peak. Another

view on the same quantity is the static structure function, which is essentially the Fourier

transform of the pair distribution function

S(q) = 1 + ρ

∫
d3r eiq·r[g(r) − 1] (1.5)

This quantity is also peaked at the wave vector corresponding to the periodicity of the

particles, left pane in figure 1.2. In proper units, i.e. Fermi wave vector kF , this peak

is approximately at constant wave vector for different densities. The height of the peak

is related to the closeness of a phase transition to the solid. One could generalize the

statement: The position of the maximum is approximately the same for all systems close

to a phase transition to the solid, if the solid state has the same lattice. For bulk 3He the

peak in the static structure is at qmax ≈ 2.5kF . For the electron liquid at low densities,

which is very different to Helium, the peak is approximately at the same position. This

is a very general statement, which has far reaching consequences for the dynamics as we

will see in the next section.
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Figure 1.3: The PHB and the collective modes for the electron and Helium fluid are

shown. In 3He the collective mode is called zero-sound, because the dispersion starts

linear like ordinary sound. For electrons in 3 dimensions the collective mode starts at

a finite energy and is called plasmon.

1.2 Qualitative discussion of the dynamics

Our theory is designed to describe the dynamics of the many body system. Specifically we

are interested in the excitations of the ground state. Therefore we need, as starting point,

a precise theory of the ground state. The accuracy of our dynamic theory depends on the

accuracy of the ground state. For the sake of discussion we first study a very simple system,

the non interacting Fermi gas. The ground state is a Slater-determinant of plane waves,

|Φ0〉. According to the Pauli exclusion principle the momentum distribution constitutes

a sphere, the Fermi-sphere. The energy E of a particle with momentum ~k is simply

E = ~2k2

2m
, the kinetic energy. The elementary particle number conserving excitation is the

creation of a particle-hole pair |Φph〉 = a†pah |Φ0〉, where p and h denote states outside

and inside the Fermi sphere, respectively and p = h + q. The energy of this excitation is

the kinetic energy difference eph = ~2

2m
(p2 − h2). For such a simple system the dynamic

structure function is obtained directly by insertion in the definition:

S(q, E) =
1

N

∑

n

| 〈Ψn| ρq |Ψ0〉 |
2δ(E − En0) =

1

N

∑

p,h

| 〈Φph| ρq |Φ0〉 |
2δ(E − eph) (1.6)

The accessible region in q, E space is a band confined to max (0, q2 − 2q) ≤ E ≤ q2 + 2q,

called the particle hole band (PHB).

As soon as we have interaction between the particles we have two additional excitations:

• The collective mode (zero sound, plasmon), which is a sharp excitation with certain

momentum and energy. Like ordinary sound, it is a long lived excitation at small
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momenta (i.e. outside the PHB). It becomes strongly damped (Landau damping)

as it enters the PHB. See figure 1.3.

• Multi-particle excitations, which contribute a weak broad background to the dy-

namic structure factor.

Details on the dynamic structure function are found in the next chapters, here we want

to concentrate on a significant feature, the roton minimum. A first approximation for the

collective mode, if we neglect p-h excitations, is the Feynman spectrum εq = ~2q2

2mS(q)
[19].

Altough we know that it is about a factor two to high for the roton minimum in 4He, the

spectrum has the qualitatively correct behavior. We immediately see that the peak in S(q)

is responsible for the formation of the roton minimum. As we discussed in the previous

section this peak is related to the closeness of a liquid to solid phase transition.[38] At

the phase transition, which is before the roton minimum becomes zero, rotational and

translational symmetry breaking occurs. Among other the excitation spectrum becomes

direction dependent. Therefore the momentum of roton minimum, which depends on the

direction in the lattice, is at twice the edge of the Brillouin zone. Thus the name “roton”

is misleading and it has nothing to do with rotation. Instead it is a very general effect

and is visible in many different systems.

1.2.1 Time Dependent Hartree–Fock (TDHF)

The basic method which underlies this work is TDHF. We briefly review the ideas and

the derivation of the method. More details can be found in several books [40, 20].

Starting from an optimized HF ground state we generate particle number conserving

particle–hole excitations: |Φph〉 = a†pah |Φ0〉. These excitations are weighted by a time

dependent amplitude cph(t). In principle we allow arbitrary many independent excitations,

thus the trial wave function has the form:

|Ψ0(t)〉 = e
1
2

P

ph cph(t)a†
pa

h |Φ0〉 (1.7)

The optimal amplitudes are determined by extremizing the action S if the system is under

a small external perturbation Hext(t):

S
[
cph, c

∗
ph

]
=

∫
dt 〈Ψ0(t)| H +Hext(t) − i ~

∂

∂t
|Ψ0(t)〉 =

∫
dt L (1.8)

where the Hamiltonian in second quantized form

H =
∑

α

tαa
†
αaα +

1

2

∑

αβγδ

〈αβ|V |δγ〉 a†αa
†
βaγaδ. (1.9)
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enters. As result we obtain the linearized equations of motion

0 = i~ċph + hext
ph + ephcph +

∑

p′h′

〈ph′|V |hp′〉a cp′h′ +
∑

p′h′

〈pp′|V |hh′〉a c
∗
p′h′ (1.10)

where eph = ep − eh is the Hartree-Fock single particle energy difference and eα is the

Hartree-Fock energy

eα = tα +
∑

h

〈αh|V |hα〉a (1.11)

and 〈αh|V |hα〉a = 〈αh|V |hα〉− 〈αh|V |αh〉. It consists of the constant Hartree and the

momentum dependent Fock energy.

The important point is that the bare interaction V (r) enters the equations in the

matrixelement

〈ph′| V |hp′〉 =
1

V 2

∫
d3rd3r′eipreih′r′V (r − r′)e−ihre−ip′r′ (1.12)

=
1

NV 2

∑

k

∫
d3rd3r′eih1reih2r′Ṽ (k)eik(r−r′)e−ip1re−ip2r′

=
1

N
δp−h,p′−h′Ṽ (p− h)

where we introduced the dimensionless Fourier transform

f(r) =
1

N

∑

k

eikrf̃(k) . (1.13)

The Fourier transform of a hard core potential, as it is the case for Helium, does not

exist. Thus the method is inapplicable for such systems. A possible cure, as mentioned

above, is the ad hoc introduction of effective interactions. The introduction is justified

by arguing that the particles in the fluid experience a screened interaction instead of the

bare interaction. By generalizing this approach to a correlated wave function we are able

to derive this effective interaction in a rigorous way.

By neglecting exchange terms and the Fock energy the TDHF equation can be solved

analytically. This is yet another way to derive the RPA.

1.3 Organization of the thesis

The thesis is divided in two parts. The first part describes, as a self-contained treatise,

the scientific work done during my PhD studies. It also goes into details in issues which

are not yet published. If a topic has already been published or submitted it only briefly

discussed and referred to the related paper. In the second part are selected publications

submitted or published during my PhD studies.
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Outline of part I

In chapter 2 the ingredients for the development of a dynamic theory are presented.

For that purpose the Fermi hyper-netted chain method (FHNC), which provides a good

ground state, is first reviewed. The basis for the excited states are Jastrow correlated

Hartree-Fock states. The tool to deal with matrix elements of these states is correlated

basis functions theory (CBF). The trial wave function and the theory are formulated in

the terms of CBF matrix elements.

In chapter 3 we restrict our selves to one-particle one-hole excitations. Contrary to

the common treatment we do not neglect exchange effects. We obtain correlated TDHF

equations with exchange. Transforming this equations to a weakly interacting form, eq.

(1.10), provides us with an expression for the effective interaction in the direct and the

exchange channel (xRPA). Of course these interactions are not the same. At the end we

show that inclusion of exchange terms has a significant effect on the dynamics of 3He.

In chapter 4 we take two-particle two-hole excitation into account, but neglect exchange

effects temporarily. Only an outline of the derivation is given, since the details are found

in [II].

In chapter 5 we combine the results of the previous two chapters. This will give an out-

standing agreement of the microscopic many body theory compared with the experiment.

Publications in part II

(I) Henri Godfrin, Matthias Meschke, Hans-Jochen Lauter, Helga M. Böhm, Eckhard

Krotscheck and Martin Panholzer. Roton-like collective mode observed in a Fermi

liquid beyond the particle-hole continuum, submitted to nature

(II) H. M. Böhm, R. Holler, E. Krotscheck, and M. Panholzer. Dynamic Many-Body

Theory. II. Dynamics of Strongly Correlated Fermi Fluids submitted to Phys. Rev.

B

(III) M. Panholzer, H. M. Böhm, R. Holler, E. Krotscheck. Exchange Effects and the

Dynamics of He-3 Journal of Low Temperature Physics , 158:135–140 ,2010
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Chapter 2

The basics: FHNC and CBF

In order to develop a dynamic theory for many body systems we need an accurate descrip-

tion of the ground state. For strongly interacting Fermi systems the best starting point

is a Jastrow correlated Hartree-Fock ground state. The method to obtain the various

ground state properties is the Fermi Hypernetted chain method (FHNC). The basic idea

and the simplest approximations are given in the first part of this chapter. The second

part is devoted to the problem of determining the matrix-elements of correlated excited

Hartree-Fock states, the correlated basis functions (CBF). Altough this all is not new

[14, 18, 13, 34], it is necessary to define the language to be used later.

2.1 The FHNC method

To improve upon the HF ground state, which greatly over estimates the energy, we intro-

duce a Jastrow correlated wave function

|ψ〉 = F |Φ0〉 (2.1)

where, in the case of an infinite homogen system, |Φ0〉 is a Slater-determinant of plane

waves and F is the correlation operator. The simplest choice for F is the Jastrow-ansatz

F =
∏

1≤i<j≤N

f(rij) = e
1
2

P

i<j u(rij). (2.2)

The calculation of one and two-body quantities is based on established methods of sta-

tistical mechanics [25]. One possible way is to derive all the necessary quantities from the

generating functional

G00(β) = ln I00(β) = ln 〈Φ0| e
P

i<j u(rij ;β) |Φ0〉 (2.3)

with

u(rij; β) = u(rij) + β

[
v(rij) −

~
2

4m
∇2u(rij)

]
(2.4)

19
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and

I00 =

∫
d3r1 . . . d

3rN |ψ|
2 (2.5)

the normalization integral. The β dependence is not always explicitly written, which means

β = 0. It will later simplify some calculations.

To derive a cluster expansion we define the short ranged quantity

h(rij) = f 2(rij) − 1 . (2.6)

Now we express the generating functional in terms of these correlation functions.

G00 = ln 〈Φ0|
∏

1≤i<j≤N

[1 + h(rij)] |Φ0〉 (2.7)

=

∞∑

n=0

1

n!

(
d

dα

)n

ln 〈Φ0|
∏

1≤i<j≤N

[1 + αh(rij)] |Φ0〉

∣∣∣∣∣
α=0

=

∞∑

n=0

(∆G)n (2.8)

This is called the power series expansion and (∆G)n is represented by the sum of all

diagrams contributing to the generating functional with exactly n correlation lines. The

first term is

(∆G)1 =
∑

i<j

〈Φ0|h(rij) |Φ0〉 =
1

2

∑

m,n<kF

〈mn| h(r12) |mn〉a

=
1

2
ρ2

∫
d3r1d

3r2h(r12)

[
1 −

1

ν
l2(r12kF )

]

=
1

2
Nρ

∫
d3rh(r)

[
1 −

1

ν
l2(rkF )

]
(2.9)

where ν is the spin degeneracy. The new element that appears is the Slater or exchange

function

l(r12kF ) =
1

ρ

∑

m<kF

φ∗
m(r1)φm(r2) (2.10)

which has the convolution property

ρ

ν

∫
d3rl(|r1 − r|kF )l(|r − r2|kF ) = l(r12kF ) . (2.11)

It can be simply proven in q-space or by using
∫
d3rφkm,σm

(r)φkn,σn
(r) = δm,nδσm,σn

, where

we explicitly wrote the spin quantum number.
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Figure 2.1: Some diagrams of G00 are shown. The first two diagrams constitute (∆G)1.

The third and the forth and the last two diagrams constitute (∆G)2 after the cancel-

lation of reducible diagrams.

The next order of the generating functional is

(∆G)2 =
1

2!
〈Φ0| 2

∑

i<j<k

h(rij)h(rjk) + 2
∑

i<j,k<l

h(rij)h(rkl) |Φ0〉

−

(
∑

i<j

〈Φ0|h(rij) |Φ0〉

)2

. (2.12)

The interesting observation is that the term in the second line cancels the unconnected

part of the first line. Therefore the generating functional is a connected quantity and also

has the correct behavior in the thermodynamic limit. At this point it is convenient to

introduce a diagrammatic language. The basic elements are closed points, which denote

coordinates which are integrated. Every closed point carries a factor ρ. The correlation

function h(rij) is represented by a dashed line and the exchange function l(rijkF ) by

an oriented solid line. In figure 2.1 some diagrams contributing to G00 are shown. By

further analysis it is possible to derive rules, which allow the determination of higher

order diagrams. Here we provide only the final rules, instead of the derivation of that rules,

which is rather lengthy [30]. For that purpose, we define some topological statements:

• A diagram is connected if there is at least one path (consisting of correlation and/or

exchange lines) between any two points.

• A diagram is biconnected if there are at least two non overlapping path between any

two points.
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• A diagram is called irreducible if it does not factorize in two or more simpler dia-

grams.

With that we state the following rules for the diagrammatic expansion of G00

1. All diagrams contributing to G00 are irreducible.

2. Every n point diagram carries a factor 1
n!

3. Every point is attached to at least one correlation line, every pair of points is con-

nected by at most one correlation line

4. Exchange lines appear in closed, non-intersecting loops. Each loop consiting of n

points contributes a factor
(
−1
ν

)n−1
.

In figure 2.1 some of the lowest order diagrams are shown. The
(

1
ν

)n−1
factor is usually

omitted. The remaining factor in front of each diagram is a combination of a topological

factor and a cancellations effect described in the literature[32].

In the next section we also need open points which denote external variables, no density

factor is assigned.

2.1.1 The pair distribution function derived from the generating

functional

Once we have a diagrammatic expansion of G00 it is easy to derive a diagrammatic ex-

pansion of the pair distribution function which is defined by

g(r) =
N(N − 1)

ρ2I00

∫
d3r3 . . . d

3rNψ
∗(1, . . . , N)ψ(1, . . . , N) . (2.13)

It is straight forward to show that

g(r12) =
2

ρ2

δG00

δu(r12)
=

2

ρ2

δG00

δh(r12)
f 2(r12) . (2.14)

Diagrammatically the functional derivative of G00 with respect to h(r12) corresponds to

removing one correlation line and opening the points which are connected to this line

and give them the labels r1 and r2. In figure 2.2 the first few diagrams are shown. The

diagrams contributing to the pair distribution function are classified due to the appearance

of exchange at the external points:

g(r) = 1 + Γdd(r) + 2Γde(r) + Γee(r) (2.15)

where Γdd(r) denotes the set of diagrams with no exchange on the external points, respec-

tively Γee(r) all diagrams with exchange on both external points and Γde(r) exchange on
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+ − −

−2 −2 +2 +2

Figure 2.2: Some diagrams of g(r) are shown. These diagrams are derived from the

first four diagrams in figure 2.1.

one of the external points. These diagrams are split into nodal1 and non-nodal diagrams,

for example

Γdd(r) = Ndd(r) +Xdd(r) (2.16)

Further we split the non-nodal diagrams in composite and elementary diagrams. Com-

posite diagrams can be factorized into two or more independent functions of r12. All

diagrams that are non-nodal and not composite are elementary diagrams, denoted for

example Edd(r12). One kind of exchange structure we have not treated yet are the cyclic

chain diagrams (e.g. Xcc(r12)). These appear only as subdiagrams in the cluster expansion

of the pair distribution function. With this last piece, we have all subdiagrams necessary

to formulate the fermion version of the HNC equations. These are basically chaining and

paralleling operations, which are simple multiplications in q- and r-space respectively. This

has to be done taking into consideration the statistical restrictions. The FHNC method

consists of eight equation which have to be iterated until convergence is reached. (These

equations are provided in appendix A for reference.) Thus we have formulated a method

to determine the pair distribution function or the static structure function directly from

a suitably chosen u(r).

2.1.2 Energy calculation

The energy is

E =
1

I00
〈ψ|H |ψ〉 . (2.17)

The potential energy is simply given by

Epot

N
=
ρ

2

∫
d3rg(r)v(r) . (2.18)

It is convenient to use the Jackson-Feenberg identity

F∇2F =
1

2
(∇2F 2 + F 2∇2) +

1

2
F 2 [∇, [∇, lnF ]] −

1

4

[
∇,
[
∇, F 2

]]
(2.19)

1A diagram is called nodal if all paths between the external points must pass through at least one

internal point. According to the above definition we can also say, a diagram is nodal if it is not biconnected

with respect to the external points.
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where the square brackets denote the commutator. With that the kinetic energy is written

−
1

I00

~
2

2m
〈ψ|
∑

i

∇2
i |ψ〉 = TF −

N~
2ρ

8m

∫
d3rg(r)∇2u(r) + TJF (2.20)

where TF is the kinetic energy of the non interacting system and TJF denotes the expec-

tation value of the last term of eq. (2.19). By partial integration we can write it as

TJF =
~

2

8mI00

∑

i

〈Φ0|
[
∇2

iF
2
]
|Φ0〉

=
~

2

8mI00

∑

i

∫
d3r1 . . . d

3rNF
2∇2

i |Φ0(1, . . . , N)|2 . (2.21)

Diagrammatically this quantity is obtained from the cluster expansion of G00 by taking

one point of a diagram which is involved in exchange. Then let the Laplacian act only on

the two exchange lines at this point. The simplest expression obtained this way is

−
~

2ρ2

8mν

∫
d3r1d

3r2Γdd(r12)∇
2
1 (l(r12kF )l(r21kF )) . (2.22)

Thus the energy per particle can be written as

E

N
=
TF

N
+
ρ

2

∫
d3rg(r)vJF (r) +

TJF

N
. (2.23)

2.1.3 Determination of the optimal correlation function

Once we are able to calculate the energy for a certain correlation function, the optimal

correlation function is determined by minimizing the energy:

δ

δu(r)

〈ψ|H |ψ〉

I00
= 0 . (2.24)

This was first done with parameterized correlation functions [41, 30]. But it was soon

realized that a functional optimization is advantageous. The Euler equation is derived by

functional variation of the energy

~
2

4m
∇2g(r) = g′(r) (2.25)

with

g′(r) =

∫
d3r′vJF (r′)

δg(r′)

δu(r)
+

2

Nρ

δTJF

δu(r)
(2.26)

This quantity is approximately calculated by another set of equations, the FHNC’ equa-

tions. The determination of the pair distribution function via the Euler equation is de-

noted as FHNC-EL. The results of an elaborate version of the theory [33] are in very good

agreement with the experiment.
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2.2 Correlated basis functions (CBF)

The basic ingredient is the correlated excited state:

|m〉 =
F |Φm〉

〈Φm|F †F |Φm〉1/2
. (2.27)

where we restrict to excited states with the same particle number |Φm〉 =

a†pi
a†pj

. . . ahj
ahi

|Φ〉 and F is determined previously by e.g. a FHNC calculation. We again

use the notion that p and h labels denote particle and hole states, respectively. There are

mainly two reasons why we need CBF. First, in order to describe excited states and their

dynamics we need such states as starting point. Second, even the Feenberg ansatz for the

ground state is, due to the “nodal surface” problem, not exact. To improve it, one uses

CBF. It is possible to introduce creation and destruction operators for correlated excited

states which are normalized

∣∣α†
k Ψm

〉
≡ F

N+1
a†k |Φm〉

/
〈Φm| akF

†
N+1

F
N+1

a†k |Φm〉1/2 (2.28)

∣∣αk Ψm

〉
≡ F

N−1
ak |Φm〉

/
〈Φm| a†kF

†
N−1

F
N−1

ak |Φm〉1/2 . (2.29)

These correlated operators obey the same commutation relations as the uncorrelated one

(But they are not Hermitian conjugates).

Now we come to the core of CBF, the determination of matrix elements. We have

naturally diagonal and off-diagonal elements:

2.2.1 Diagonal matrix elements

Im,m ≡ 〈Φm|F †F |Φm〉 ,

Hm,m −Ho,o = 〈m|H −Ho,o|m〉 ≡ 〈m|H ′|m〉 (2.30)

The ratios of normalization integrals can be written, for |Φm〉 = a†p1
. . . a†pd

ahd
. . . ah1

|Φ0〉

zp1...pdh1...hd
≡ zm =

√
Im,m

Io,o

.

These normalization integrals are related to the generating functional

zm = e
1
2
(Gmm−G00) (2.31)

The only difference of Gmm to the one defined in (2.3) is, that the exchange line is defined

as

lm(r) =
1

N

∑

i∈m

eikir . (2.32)
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The convolution property is also valid for this new exchange line.

For d≪ N the difference between Gmm andG00 is of order 1/N . This is the legitimation

to write

Gmm −G00 =

∫
d3r

δG00

δl(rkF )
[lm(r) − l(rkF )] . (2.33)

If we assume a definite m = ph we can further write

Gmm −G00 =
1

N

∫
d3r

δG00

δl(rkF )

[
eipr − eihr

]
≡ δG(p) − δG(h) (2.34)

An investigation of the diagrams generated by this procedure gives the connection to the

FHNC quantity Xcc

δG(k) = − ln
[
1 − X̃cc(k)

]
(2.35)

From this analysis we see that the normalization integrals factorize, for large particle

numbers and d≪ N as

zp1...pdh1,...hd
=
zp1

. . . zpd

zh1
. . . zhd

+ O(N−1) .

with

zk =
1√

1 − X̃cc(k)
(2.36)

A similar procedure is also applied to the matrix element of the Hamiltonian and as a

result the energy becomes additive

〈p1, . . . pdh1 . . . hd|H
′ |p1, . . . pdh1 . . . hd〉 =

d∑

i=1

epihi
+ O(N−1) , (2.37)

where eph = ep − eh. These quantities are also related to FHNC quantities

ek =
1

N

∫
d3r

δH00

δl(rkF )
eikr =

~
2k2

2m
+

X̃ ′
cc(k)

1 − X̃cc(k)
+ u0 (2.38)

2.2.2 Off-diagonal quantities

We define the off–diagonal quantities

Mm,n = 〈m|n〉 ≡ δm,n +Nm,n ,

H ′
m,n = 〈m|H ′|n〉(1 − δm,n) , (2.39)

Wm,n = H ′
m,n −

1

2
(Hm,m +Hn,n − 2Ho,o)Nm,n .

We start with the investigation of the overlap matrix element Nm,n. It is evident that for

d≪ N this quantity depends only on the orbitals in which the states m and n differ and

an error of O(1/N). This means

〈Φm|F
†F |Φn〉 = 〈m1 . . .md|N (1, . . . , d) |n1 . . . nd〉a + O(1/N) (2.40)
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Figure 2.3: The basic diagrams of NB(1, 2) up to second order are shown. The dashed

line represents the renormalized correlation line or sometimes called super-bond Γdd

To be more definite we restrict ourselves to d = 2. For example assume m = ph and

n = p′h′, then the above matrix element defines a two–body operator N

〈ph| |p′h′〉 = 〈ph′| N (1, 2) |hp′〉a (2.41)

All the complexity has been moved to the operator N , which is of course not necessary

local. Usually the operator is split in four parts due to the appearance of the non locality

N (1, 2) = Ndd(1, 2) + Ndc(1, 2) + Ncd(1, 2) + Ncc(1, 2) (2.42)

with

Ndd(1, 2) = Ndd(r12)δ(r1 − r′1)δ(r2 − r′2)

Ndc(1, 2) = Nd,cc(r1, r2; r
′
1, r

′
2)δ(r1 − r′1) = Ncd(2, 1)

Ncc(1, 2) = Ncc,cc(r1, r2; r
′
1, r

′
2) (2.43)

On a closer inspection one observes that these quantities factorize

〈ij|N (1, 2) |kl〉a = zizjzkzl 〈ij|N
B(1, 2) |kl〉a (2.44)

Figure (2.3) shows some diagrams contributing to NB(1, 2). The simplest approximation

is

NB(1, 2) ≈ NB
dd(1, 2) = Γdd(r12) (2.45)

which is consistent with the simplified FHNC equations (A.17).

The Wm,n term can be calculated from the Nm,n terms by the β derivative method

Wm,n =
∂

∂β
Nm,n(β)

∣∣∣∣
β=0

. (2.46)

Therefore a similar classification as above is possible. The local part, which is a good

starting point for the numerical implementation

WB
dd(r12) = Γ′

dd(r12) +
~

2

4m
∇2Γdd(r12) (2.47)
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++ −− −

++− −

Figure 2.4: The first line shows the direct terms of the last line in eq. (2.48), the second

the exchange terms.

2.2.3 Link to the static structure function

It is possible to calculate the static structure function directly from CBF matrix elements.

Since the density operator is local we write

S(q) = 〈ψ| ρ−qρq |ψ〉 =
∑

αα′

〈Φ0|FFa
†
α−qaαa

†
α′+qaα′ |Φ0〉

=
∑

αα′

[
δα,α′ +

√
Iα−q α′+q α α′

I00
N0,α−q α′+q α α′n(α)n̄(α− q)

]
n(α′)n̄(α′ + q)

=SF (q) +
∑

hh′

√
Ih−q h′+q h h′

I00
n̄(h− q)n̄(h′ + q) 〈hh′| N (1, 2) |h− q h′ + q〉a

≈SF (q) +
∑

hh′

n̄(h− q)n̄(h′ + q) 〈hh′| Γ̃dd(q) |h− q h′ + q〉a (2.48)

In the last line we kept only terms which are first order in Γ̃dd. The diagrams representing

the last line are drawn in figure 2.4 and indeed these are the first terms in an cluster

expansion of S(q). We also see what we neglect if we approximate N (1, 2) ≈ Γ̃dd(q).

Interestingly if we omit exchange too (second line in figure 2.4), we obtain the simplified

FHNC expression for the static structure function (A.17). This means that the use of

simplified FHNC equations is consistent with neglecting exchange in the CBF matrix

elements. For our work this means that, if we take exchange into account, we have to use

results of the full FHNC equations.

2.2.4 The power Γ̃dd expansion

We have shown in this chapter how the CBF matrix elements can be calculated exactly. In

applications we are normally forced to make approximations. Some care is needed in order

to properly approximate a matrix element. It is important to incorporate all diagrams of a

certain order in Γ̃dd. Otherwise it is possible to miss some cancellations of diagrams, which

lead to wrong results. A nice example of such cancellations can be observed by reviewing



2.2. CORRELATED BASIS FUNCTIONS (CBF) 29

the derivation of the static structure function in 2.2.3. Since the density operator is local

it is legitimate to commute it with the Jastrow correlations. Thus we obtain

S(q) =
∑

hh′

[
δh,h′

Ih+q h

I00
+

√
Ih+q hIh′+q h′

I2
00

n̄(h′ + q) 〈h+ qh′|N (1, 2) |hh′ + q〉a

]
n̄(h+ q)

≈
∑

h

n̄(h+ q)
Ih+q h

I00
+
∑

hh′

n̄(h+ q)n̄(h′ + q) 〈h+ qh′| Γ̃dd(q) |hh
′ + q〉a (2.49)

In order to be consistent we have to expand the normalization
Ih+q h

I00
up to first order in

Γ̃dd.

Ih+q h

I00
=
z2

h+q

z2
h

=
1 −Xcc(h)

1 −Xcc(h + q)
≈

1 + 1
ν

∑
h′ Γ̃dd(h− h′)

1 + 1
ν

∑
h′ Γ̃dd(h+ q − h′)

=1 +
1

ν

∑

h′

Γ̃dd(h− h′) −
1

ν

∑

h′

Γ̃dd(h+ q − h′) + O(Γ̃2
dd) (2.50)

The second term in the last line cancels with a part of the exchange term in eq. (2.49)

and thus gives the same S(q) as in (2.48).

Successive inclusion of higher orders in Γ̃dd will generally improve the results.

2.2.5 Generalization to d > 2

In the literature cluster expansions are only given for d = 2, with the additional informa-

tion that the generalization to higher d is straight forward. This is true, but for a better

understanding of the following chapters it is advantageous to write down the matrix-

elements we need later. Indeed the generalization of the factorization given in eq. (2.44)

is straight forward

〈ijk| N (1, 2, 3) |lmn〉a = zizjzkzlzmzn 〈ijk|N
B(1, 2, 3) |lmn〉a (2.51)

Further the classification of diagrams according the exchange structure of the external

points is obvious

N (1, 2, 3) = Nddd(1, 2, 3) + 3Ncc,dd(1, 2, 3) + 3Ncc,cc,d(1, 2, 3) + Ncc,cc,cc(1, 2, 3) (2.52)

with the constraint that every external point is at least touched by one correlation line.

Figure 2.5 shows some of the lowest order diagrams of the overlap matrix element for

d = 3.
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Nddd =

1 2

3

+

1

1′

3

1′ + . . .Ncc,dd =

2

+ + −

Figure 2.5: The first line shows the first few diagrams of the direct part of N (3). The

second line shows the lowest order of the nonlocal diagrams.

Four body coupling

We will also need the simplest four body diagram, which factorize in the lowest order

Mpp′hh′,p′′p′′′h′′h′′′ ≈ δpp′′δp′p′′′δhh′′δh′h′′′ + δpp′′δhh′′ 〈p′h′′′| Γ̃dd |h
′p′′′〉 (2.53)

+δp′p′′′δh′h′′′ 〈ph′′| Γ̃dd |hp
′′〉 + 〈p′h′′′| Γ̃dd |h

′p′′′〉 〈ph′′| Γ̃dd |hp
′′〉



Chapter 3

Exchange in correlated RPA

The simple RPA uses an effective or screened interaction, which have to be determined in

a separate calculation. Only for systems with an interaction that has a Fourier transform,

the use of the bare interaction is possible. In fact, for the most interesting systems in

nature this is not the case. Therefore one has to find a procedure to determine this

effective interaction. There are several ways to find such an effective interaction, one is to

require the fulfilment of the m0 and m1 sumrule, another is to apply phenomenological

considerations [3, 4, 27]. In this thesis a different approach is chosen, we start from an

accurate microscopic description of the ground state which incorporates the important

Jastrow correlations. Thus we formulate the TDHF in a correlated basis [12] (cTDHF).

By transforming this equations to a form identical to (1.10), we obtain a clear description

of how to determine the effective interaction out of CBF matrix elements [31]. Thus we end

up with a microscopic description of the effective interaction in terms of FHNC quantities.

In this chapter a description how to perform this transformation and which approxima-

tions are necessary is presented. At the end numerical results for the different approxima-

tions are shown. A part of the work presented in this chapter has already been published

[III], but the treatment here is more up to date and detailed.

3.1 The trial wave function

In this chapter we will use a stationary principle in order to derive equations of motion.

Therefore we need a trial wave function which is flexible enough to describe the important

physical effects. One can use the theory applied for Bosons as guide line for our calculations

for Fermions. It has been shown that pair excitations play an important role for Bosons[6].

31
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The generalization to Fermions have the form

|Ψ(t)〉 = exp
[
−iHoot/~

]
|Ψ0(t)〉 ,

|Ψ0(t)〉 =
1

I1/2(t)
exp

1

2
U(t) |ψ〉 , (3.1)

I(t) =

〈
ψ exp

1

2
U †(t)

∣∣∣∣ exp
1

2
U(t)ψ

〉
.

where

U(t) =
∑

ph

δu
(1)
ph (t) α†

pαh +
∑

php′h′

δu
(2)
pp′hh′(t) α

†
pα

†
p′αh′αh (3.2)

δu
(1)
ph (t) is the time-dependent correlated particle hole excitation amplitude and similar

δu
(2)
pp′hh′(t) the two particle two hole excitation amplitude. In this chapter we restrict

ourselves to single particle hole excitations in order to derive the RPA equations.

In using this definition of the trial function, a normalization factor has been absorbed

in δu
(1)
ph in contrast to [12].

3.2 The cTDHF equations

The particle–hole amplitudes δu
(1)
ph (t) are determined by the stationarity principles [28]

S
[
δu

(1)
ph , δu

(1∗)
ph

]
=

∫
dt L(t) , (3.3)

from the Lagrangian

L(t) = 〈Ψ(t)| H +Hext(t) − i ~
∂

∂t
|Ψ(t)〉

= 〈Ψ0(t)| H
′ +Hext(t) − i ~

∂

∂t
|Ψ0(t)〉 . (3.4)

where the external potential enters via

Hext(t) ≡

∫
d3r hext(r; t) ρ̂(r) (3.5)

and thus couples to the density, since we are interested in the density–density response. (If

we would be interested in spinfluctuations the external perturbation has to couple to the

spin density.) By minimizing the action, equations of motion are derived, where we keep

only the first order in the particle–hole amplitudes, since we investigate linear response

in this thesis. The result is the cTDHF equation

−2

∫
ρph,0(r)hext(r, t) =

∑[
Hph,p′h′ − i~Mph,p′h′

∂

∂t

]
δu

(1)
p′h′ +

∑
Hpp′hh′,0δu

∗(1)
p′h′ . (3.6)
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The procedure outlined above is known as time–dependent Hartree–Fock (TDHF) theory

[28, 29, 40], generalized to strongly interacting systems [12, 31].

We assume harmonic time dependence of the external potential

hext(r, t) = hext(r;ω)
[
eiωt + e−iωt

]
eηt (3.7)

where the infinitesimal η ensures the adiabatic switching on of the potential. This imposes

the time dependence

δu
(1)
ph (t) =

[
δu

(1+)
ph (ω)e−iωt + δu

∗(1−)
ph eiωt

]
eηt . (3.8)

With this we can write the above equation in super matrix form

[
A − ~ωM− iη B

B∗ A∗ + ~ωM∗ + iη

](
δu(1+)

δu(1−)

)
=

(
ρph,0

ρ0,ph

)
hext(q, ω) (3.9)

where A, B and M are matrices with components

Aph,p′h′ = ephδpp′δhh′ +Hph,p′h′

Bph,p′h′ = Hphp′h′,0

Mph,p′h′ = δpp′δhh′ +Nph,p′h′ (3.10)

and

δu(1+) =



δu

(1+)
h1+qh1

δu
(1+)
h2+qh2

...


 . (3.11)

where we introduced the momentum transfer q = p − h. We also defined the matrix

element of the density operator ρ̂(r) =
∑

i δ(r − ri):

ρph,0 = 〈ph| ρ̂ |0〉 . (3.12)

The density matrix element can be written in two ways. Since the density operator is

a function of the position only, it commutes with the Jastrow correlations due to its

locality(see 2.2.3):

〈ph| ρ̂ |0〉 =
∑

α

〈Φph|FFa
†
α−qaα |Φ0〉

〈Φph|FF |Φph〉
1/2

=
∑

α

〈Φph| a
†
α−qaαFF |Φ0〉

〈Φph|FF |Φph〉
1/2

(3.13)
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which directly yields to

(
ρph,0

ρ0,ph

)
=

(
zph +Nph,p′h′zp′h′ 0

0 zph +Np′h′,phzp′h′

)(
ρF

p′h′,0

ρF
0,p′h′

)

=

(
1 +Nph,p′h′ 0

0 1 +Np′h′,ph

)(
ρ̃F

p′h′,0

ρ̃F
0,p′h′

)
(3.14)

=




1

z2
ph

Npp′hh′,0

N0,pp′hh′
1

z2
ph




(
ρ̃F

p′h′,0

ρ̃F
0,p′h′

)
(3.15)

where ρF
ph,0 = 〈Φph| ρ̂ |Φ0〉 = 〈p| ρ̂ |h〉, the matrix element of the density operator of

the non-interacting system, has been defined. Additionally we have defined the quantity

ρ̃F
p′h′,0 = zphρ

F
p′h′,0. Now we invert the cTDHF-matrix

(
δu(1+)

δu(1−)

)
=

[
A − (~ω + iη)M B

B∗ A∗ + (~ω + iη)M∗

]−1(
ρph,0

ρ0,ph

)
hext(q, ω) . (3.16)

The density fluctuation expressed in this matrix notation is

δρ(q, ω) = 〈Ψ| ρ̂(q) − ρ0 |Ψ〉 =
(
ρ0,ph ρph,0

)(δu(1+)

δu(1−)

)
. (3.17)

From that we directly obtain the linear response

χ(q, ω) =
(
ρ0,ph ρph,0

)[ A− (~ω + iη)M B

B∗ A∗ + (~ω + iη)M∗

]−1(
ρ0,ph

ρph,0

)
. (3.18)

The idea is now that the cTDHF matrix can be simplified by absorbing the correlated

density matrix elements. The result is a RPA like equation with an effective interaction.

First we define the supermatrices

Ω =

(
eph − ~ω − iη 0

0 eph + ~ω + iη

)
, W =

(
Wph,p′h′ Wpp′hh′,0

W0,pp′hh′ Wp′h′,ph

)
(3.19)

N =

(
Nph,p′h′ Npp′hh′,0

N0,pp′hh′ Np′h′,ph

)
. (3.20)

Then the xRPA matrix equation assumes the form

[
A − (~ω + iη)M B

B∗ A∗ + (~ω + iη)M∗

]
=

[
Ω +

1

2
ΩN +

1

2
NΩ + W

]

=

[
1 +

1

2
Ñ

][
Ω + Vp−h(ω)

][
1 +

1

2
Ñ

]
, (3.21)
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using Ñ = N + ∆N this defines a new, energy–dependent interaction matrix

Vp−h(ω) =

[
1 +

1

2
Ñ

]−1 [
W −

1

2
∆NΩ −

1

2
Ω∆N −

1

4
ÑΩÑ

] [
1 +

1

2
Ñ

]−1

. (3.22)

In doing so we deviate from the transformation in [31], in order to obtain exactly the

noninteracting density matrix element. Using the mean of the two representations of the

density matrix element (3.14) and (3.15) yields the definition of Ñ:

(
ρ0,ph(r)

ρph,0(r)

)
=

[
1 +

1

2
N +

1

2
∆N

](
ρ̃F

0,p′h′(r)

ρ̃F
p′h′,0(r)

)
(3.23)

with

∆N =




(
1

z2
ph

− 1
)
δpp′δhh′ 0

0
(

1
z2
ph

− 1
)
δpp′δhh′


 . (3.24)

With the definition

c ≡

(
c
(1+)
ph

c
(1−)
ph

)
=

[
1 +

1

2
Ñ

](
δu

(1+)
p′h′

δu
(1−)
p′h′

)
(3.25)

our response equation assumes the simple and familiar form

[
Ω + Vp−h(ω)

]
c = 2h (3.26)

where, in fact, the δρ(r;ω) = ℜe
∑

ph c
(1+)
ph (ω)ρ̃F

0,ph(r) + c
(1−)
ph (ω)ρ̃F

ph,0(r), i.e. we have the

ordinary RPA relationship.

3.3 Diagrammatic reduction of the equations

On the first sight the transformation defined in the previous section looks only like a

formal simplification, where some of the complexity has been moved to the interaction

matrix. This is true to some extent, but if we take only diagrams of first order in Γ̃dd into

account, the problem indeed simplifies. In figure 3.1 the N-matrix in this approximation is

shown. This approximation also implies ∆N = 0. Performing the transformation we end

up with a microscopic derivation of the effective interaction Vp−h, which is a diagrammatic

subset of W. We start our investigation in the direct channel, because here it is easier to

see what happens. Later we also take the exchange channel into account. To distinguish

the direct and the exchange channel we introduce the following notion:

N =

(
〈ph′|N |hp′〉a 〈pp′|N |hh′〉a
〈hh′|N |pp′〉a 〈p′h|N |h′p〉a

)
= N(d) + N(ex) (3.27)
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

 Nph,p′h′ Npp′hh′,0

N0,pp′hh′ Np′h′,ph



 =

−1

ν
−1

ν

−1

ν
−1

ν

p h

p′ h′

Figure 3.1: The figure shows the N-matrix in the approximation given in (2.45). The

dashed line represents Γ̃dd. The lines with arrows indicate the Hartree-Fock single

particle orbitals.

and accordingly the other quantities.

It is important to visualize the diagrams generated by matrix multiplication.

For instance let us examine the result of (N · N)ph,p′h′ =
∑

p′′h′′ Nph,p′′h′′Np′′h′′,ph +

Npp′′hh′′,0N0,p′′p′h′′h′: This produces diagrams with two Γ̃dd lines connected by p′′ and h′′.

The summation over h′′ becomes a Slater exchange line and the summation over p′′ a

delta-function minus an exchange line. Thus in the direct part the matrix multiplication

simply reduces to a multiplication with 2SF (q) in momentum space.

3.3.1 Direct channel

We define the irreducible matrix X by

N(d) =

(
1 +

1

2
N(d)

)
X(d) (3.28)

In the direct channel the matrix multiplication is easily performed. Therefore this matrix

equation can be written as ordinary equation

Γ̃dd(q) = X̃dd(q) + Γ̃dd(q)SF (q)X̃dd(q) (3.29)

where we used

X(d) =

(
〈ph′| X̃dd |hp

′〉 〈pp′| X̃dd |hh
′〉

〈hh′| X̃dd |pp′〉 〈p′h| X̃dd |h′p〉

)
=

(
X̃dd(p− h) X̃dd(p− h)

X̃dd(h− p) X̃dd(h− p)

)
(3.30)

and X̃dd(q) is indeed the non nodal FHNC quantity. This is easily proven by inserting the

simplified FHNC equations (A.17). A deeper understanding is gained by investigating this

operation in the diagrammatic language. In that language we see that Γ̃dd is the infinite

chain of the non-nodal quantity X̃dd.
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Now we examine the interaction-part. We define the quantity X′

W(d) =

(
1 +

1

2
N(d)

)
X′(d)

(
1 +

1

2
N(d)

)
(3.31)

in W we use the simplest approximation for the matrix elements

〈ij|W |kl〉 = δi−k,l−jW (i− k) = Γ′
dd(i− k) −

~
2(i− k)2

4m
Γdd(i− k) (3.32)

We anticipate that X′(d) is given by

X′(d) =

(
X ′

dd X ′
dd

X ′
dd X ′

dd

)
−

~
2q2

4m

(
Xdd Xdd

Xdd Xdd

)
+

1

4

(
Xdd Xdd

Xdd Xdd

)(
tph 0

0 tph

)(
Xdd Xdd

Xdd Xdd

)

(3.33)

where we omitted the momentum dependence of the matrix elements for brevity. Perform-

ing all matrix multiplications we are again able to write eq. (3.31) as ordinary equation.

We obtain

W (q) = (1 + SF Γ̃dd)X̃
′
dd(1 + SF Γ̃dd) −

~
2q2

4m
(1 + SF Γ̃dd)

[
X̃dd − X̃2

dd

]
(1 + SF Γ̃dd)

= X̃ ′
dd(1 + 2SF Γ̃dd + S2

F Γ̃2
dd) −

~
2q2

4m

[
Γ̃dd(1 + SF Γ̃dd) − Γ̃2

dd

]

= X̃ ′
dd(1 + 2SF Γ̃dd + S2

F Γ̃2
dd) −

~
2q2

4m
Γ̃2

dd [SF − 1] −
~

2q2

4m
Γ̃dd

= X̃ ′
dd +N ′

dd −
~

2q2

4m
Γ̃dd = Γ̃′

dd −
~

2q2

4m
Γ̃dd , (3.34)

where we used the simplified FHNC’ equation

N ′
dd = 2SF Γ̃ddX̃

′
dd + S2

F Γ̃2
ddX̃

′
dd −

~
2q2

4m
Γ̃2

dd [SF − 1] (3.35)

which is obtained from (A.11) by application of the method described in section A.2.1.

Thus we have shown that the expression for X′(d) although looking complicated, leads to

the correct W (q) as defined in (2.47). Now we insert all this into the equation for the

effective interaction and express it with the irreducible quantities

V
(d)
p−h = X′(d) −

1

4
X(d)ΩX(d) . (3.36)

The local function entering the matrix become

Vph(q) = X̃ ′
dd(q) −

~
2q2

4m

[
X̃dd(q) − X̃2

dd(q)
]
−

1

2

∑

ph

X̃2
dd(q)eph . (3.37)

It is important to note that the ω-dependence vanish in the direct part. Further simplifi-

cation is possible if we neglect the Fock-term in the single particle-hole energy

eph = t(p) + u(p) − t(h) − u(h) ≈
~

2(p2 − h2)

2m
. (3.38)
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h
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2 + −1
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−1

2 +
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h

p′ h′

h

p′h′
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h′ p′

p
p p

p′h′
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p′ h′
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−1

2
−1

2

Figure 3.2: The second order of the N
(non d) matrix is shown whereas the trivial first

oder part is omitted. The non nodal quantity X̃dd is represented by a double dashed

line.

This is consistent with neglecting the exchange terms, since the Fock-energy is the ex-

change term of the Hartree-energy. Therefore the effective interaction reduces to

Vph(q) = X̃ ′
dd(q) −

~
2q2

4m
X̃dd(q) . (3.39)

3.3.2 Determination of the exchange matrix element in xRPA

First we have to find the exchange analog of (3.28):

N(non d) =

(
1 +

1

2
N(ex)

)
X(ex) +

1

2
N(ex)X(d) +

1

2
N(d)X(ex) . (3.40)

In that expression no simple chaining operation appears, therefore we choose

X(ex) =

(
〈ph′|Γdd |p′h〉 〈pp′|Γdd |h′h〉

〈hh′|Γdd |p′p〉 〈hp′|Γdd |h′p〉

)
(3.41)

Executing the matrix multiplications results in second order diagrams. These second order

diagrams are a part of the complete second order contribution to N . Therefore we assign

this quantity with a different name, N(non d). The second order part of N(non d) is shown

in figure 3.2. The interesting point is that first order in the effective interaction leads to

some second order contributions in the correlated equations. Or the other way round: To

obtain the same approximation in the cTDHF equations as in the reduced equations, one

has to calculate some second order diagrams.
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X′(ex) is obtained by generalization of (3.33).

X′(ex) =

(
〈ph′|Γ′

dd |p
′h〉 〈pp′|Γ′

dd |h
′h〉

〈hh′|Γ′
dd |p

′p〉 〈hp′|Γ′
dd |h

′p〉

)
−

~
2q2

4m
X(ex)

−
1

4

[
X(d) −X(ex)

]
(
tph 0

0 tph

)
[
X(d) −X(ex)

]
+

1

4
X(d)

(
tph 0

0 tph

)
X(d) (3.42)

We insert this all into the expression for the effective interaction

V
(ex)
p−h = (X′ −

1

4
XΩX)ex = X′(ex) −

1

4

[
X(d)ΩX(ex) + X(ex)ΩX(d) + X(ex)ΩX(ex)

]
(3.43)

In the simplest approximation we keep only first order terms. This leads to the result of

[33], which is a local exchange potential:

〈ph′|Vex(r − r′) |p′h〉 (3.44)

with

Vex(q) = Γ′
dd(q) −

~
2q2

4m
Γdd(q) = W (q) . (3.45)

It remains to show whether

W(non d) =
1

4

[
N(ex)X′(d)N(d) + N(d)X′(d)N(ex) + N(ex)X′(d)N(ex)

]

+(1 +
1

2
N)X′(ex)(1 +

1

2
N) (3.46)

is a good approximation of W(ex). Indeed, this produces additionally to the first order

contribution, some of the second and third order diagrams. Hence the situation is similar

to the above one. In the effective equations we calculate more diagrams than in the cTDHF

equations. Altough the treatment of exchange effects is very demanding and not exact, it

seems to be essential in obtaining quantitative agreement with the experiment.

3.4 The numerical method

In the simple RPA the response equation can be solved analytically. This is no longer

possible if we include exchange terms. Therefore we have to resort to purely numerical

means. There are in principle two methods which tackle the problem at the same point,

inverting the xRPA matrix. The first method is finding the eigenvalues and eigenvectors

of the matrix. Once we found the spectrum we are able to solve this equation for arbitrary

ω without much computational effort. The disadvantage of this approach is that for en-

ergy dependent potentials this is no longer possible. Energy dependent potentials appear

already in an advanced treatment of the exchange, but at latest if we want to include
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two-particle two-hole excitations we can not avoid the energy dependence. The second

method is the numerical inversion of the xRPA matrix for every ω. This is much slower

but one is not restricted to the eigenvalue problem.

To properly discretize the problem one first rewrite the summations occurring in the

matrix multiplications as integrals. These integrals are then discretized and written as

matrix multiplications. Due to the finite number of discretization points we obtain discrete

excitation energies. A small imaginary part η is added to artificially broaden the appearing

δ functions. η has to be adjusted such that it is large enough to obtain a smooth response

and not to large in order to keep the details of the respone. The calculations in figure 3.6

and 3.7 where performed with N = 32 × 32 integration points. More details about the

numerical method can be found in Ref. [36].

3.5 The long wavelength behavior

As pointed out in [39] the RPA becomes valid in the limit q → 0. We investigate

now this limit for the case studied above, i.e. CBF single p-h excitations, including ex-

change diagrams. We write the relevant part of the xRPA equations with restriction to

[Vp−h]ph,p′h′ = 〈ph′| Vph |hp′〉 − 〈ph′| Vex |p′h〉:

eh+q,hch+q,h −
1

ν

∑

h′

n(h′)n̄(h′ + q)Vex(h− h′)ch′+q,h′ + [. . . ] = 0 . (3.47)

We approximate the particle-hole amplitude by its Fermi-sea average and the single parti-

cle hole energy difference by the Hartree-Fock energy difference, where we have to use the

same level of approximation as for the matrix elements: ek = t(k)− 1
ν

∑
h n(h)Vex(k− h).

Thus
[
2hq + q2 −

1

ν

∑

h′

n(h′) (Vex(h + q − h′) − Vex(h− h′) + n̄(h′ + q)Vex(h− h′))

]
cq+[. . . ] = 0 ,

(3.48)

using n̄(h′ + q) = 1 − n(h′ + q) we obtain

[
2hq + q2 −

1

ν

∑

h′

n(h′) (Vex(h+ q − h′) − n(h′ + q)Vex(h− h′))

]
cq + [. . . ] = 0 . (3.49)

By renaming the summation variables we end up with a form that is identical to the

exchange term in the B-channel

[
2hq + q2 −

1

ν

∑

h′

n(h′)n̄(h′ − q)Vex(h+ q − h′)

]
cq + [. . . ] = 0 . (3.50)
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Thus we see that the exchange diagrams do not vanish in the limes q → 0. In that

approximation the contribution from the exchange term is only local, thus

Ṽex(q) ≡ −
1

ν

∑

h′

n(h′)n̄(h′ − q)Vex(h+ q − h′) (3.51)

This means that in the long wave length limit the equations of motion assume the RPA

form with an effective interaction of the form:

V RPA
ph (q) = Vph(q) + Ṽex(q) (3.52)

It is important to note that the exchange interaction and the Fock energy are related.

If they are not chosen properly, a wrong q → 0 behavior for the response is obtained.

3.6 Sumrules and how to estimate the error

Sumrules relate properties of excitations to ground state quantities, known from exper-

iments or ground state calculations. Of course we use approximations for the matrix

elements entering our theory and therefore the sumrules do not necessary reproduce the

known ground state quantities exactly. Thus we are able to use these rules to estimate

the error of our theory. In order to be able to compare with other results and to justify

the approximations made for the matrix elements it is important that these sumrules are

as accurate as possible fullfiled.

Define the n-th moment:

mn =

∫ ∞

0

dω ωnS(q, ω). (3.53)

In our case the zeroth and the first moment sumrule are important:

m0 = S(q) =

∫ ∞

0

dω S(q, ω), (3.54)

m1 =
~

2q2

2m
=

∫ ∞

0

dω ωS(q, ω). (3.55)

Calculating the response from the CBF matrix elements we have three possible sources

for errors:

• The difference of the Jastrow Feenberg wave function to the exact ground state

wavefunction.

• The difference of our approximation of the CBF matrix element, which mainly

consists of first order in Γ̃dd, to the exact one.

• Discretisation errors.
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Note that in our approach multipair excitations do not effect the sumrules. Fortunately

we are able to estimate the error of the CBF matrix elements, since we know their relation

to ground state properties.

The static structure:

〈0| ρqρ−q |0〉 = S(q) . (3.56)

This is directly related to

∑

h,h′

√
Ih+qhIh′+qh′

I00
Mh+qh,h′+qh′ =

∑

h

Ih+qh

I00
+
∑

h,h′

√
Ih+qhIh′+qh′

I00
Nh+qh,h′+qh′. (3.57)

Free kinetic energy

〈0| ρq(H −H00)ρ−q |0〉 =
∑

k,k′

〈0| a†kak+q(H −H00)a
†
k′+qak′ |0〉 =

~
2q2

2m
(3.58)

which is equivalent to

∑

h,h′

√
Ih+qhIh′+qh′

I00
Ah+qh,h′+qh′ =

∑

h

Ih+qh

I00
eh+qh +

∑

h,h′

√
Ih+qhIh′+qh′

I00
Hh+qh,h′+qh′. (3.59)

Fermi sea average of the Brillouin condition

〈0| (H −H00)ρqρ−q |0〉 = 0 (3.60)

equivalent to

∑

h,h′

√
Ih+q h′+q hh′

I00
Bh+qh,h′+qh′ =

∑

h,h′

√
Ih+q h′+q hh′

I00
H0,h+qhh′−qh′. (3.61)

These properties lead to exact fulfilment of the m0 and m1 sumrule in the collective

approximation. In most cases[31, 12] one uses this three conditions as defining equations

for the matrix elements of CBF. This approach is only reasonable if local approximations

are made for the CBF matrix elements and thus exchange and other nonlocal diagrams

are neglected. The approach is then consistent with the simplified FHNC method, defined

in A.2.1. We do not make these simplifications and thus this method become ambiguous.

Our input quantities are obtained from an elaborated FHNC calculation[33]. As result the

above mentioned properties are no longer exactly fullfiled since we use approximations

for the CBF matrix elements, thus they are fulfilled approximately. But we are sure that

the difference becomes smaller if we calculate the CBF matrix elements to higher order.

Thus it is legitimate to abort this procedure at sufficient accuracy. In figure 3.4 we show

the result of eq. (3.59) and (3.61) which give reasonable results. (Notice that the relative
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error of eq. (3.59) is about 3 persent.) The error of eq. (3.57) shown in figure 3.3 is also

of the expected order.

Actually we do not solve the cTDHF equations, instead we solve the transformed

equations (xRPA) which take additional diagrams into account. Thus, in order to estimate

the error made in the matrix elements, we should check how well the sumrules are fulfilled

in the collective approximation. It is easy to solve the collective equations analytically.The

collective approximation of the xRPA response is

χcoll(q, ω) =
(
SF SF

)(−~ωSF + εq + S2
FVA S2

FVB

S2
FVB +~ωSF + εq + S2

FVA

)−1(
SF

SF

)
(3.62)

where we omitted the q dependence in order to keep clarity and abbreviated the average

Hartree–Fock single particle hole energy difference by εq. It is straight forward to invert

the matrix

χcoll(q, ω) =
2SF

(
εq

SF
+ SF (VA − VB)

)

−(~ω)2 +
ε2
q

S2
F

+ 2εqVA + S2
F (V 2

A − V 2
B)

(3.63)

Of particular interest is the imaginary part of the response for positive energies

ℑm
[
χcoll(q, ω > 0)

]
=

−
πSF

(
εq

SF
+ SF (VA − VB)

)

√
ε2
q

S2
F

+ 2εqVA + S2
F (V 2

A − V 2
B)

δ

(
~ω −

√
ε2

q

S2
F

+ 2εqVA + S2
F (V 2

A − V 2
B)

)
(3.64)

The m1 sumrule yield

SF

(
εq

SF

+ SF (VA − VB)

)
≡

~
2q2

2m
(3.65)

and the m0 sumrule

SF

(
εq

SF
+ SF (VA − VB)

)

√
ε2
q

S2
F

+ 2εqVA + S2
F (V 2

A − V 2
B)

≡ S(q) . (3.66)

In figure 3.3 we compare the m0 sumrule in the collective approximation with the FHNC

S(q). More interesting is the comparison of the m1 sumrule (3.65) and the expected value

as shown in figure 3.4. The remaining very small difference is due to discretisation errors,

because it is analytically exact, as shown in the previous section.

3.7 Results in different approximations

Due to the complicated nature of the exchange channel, we have many different possibili-

ties for approximations. Therefore it is necessary to approach the problem systematically.
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Figure 3.3: The result of different approximations for the m0 sumrule are shown. Solid

black is the reference static structure functions obtained from FHNC calculations [33].

Dashed red is the result of the m0 sumrule in xRPA in the collective approximation

(3.66). Short dashed green is the same for cTDHF. Dotted blue is the result of eq.

(3.57).

First we split the effective interaction in different parts:

Vp−h = V
(d)
p−h + Vex + VE + VF (3.67)

The first term is explained above. The second is the simplest exchange contribution

Vex =

(
〈ph′| Vex |p′h〉 〈pp′|Vex |h′h〉

〈hh′|Vex |p′p〉 〈hp′|Vex |h′p〉

)
(3.68)

The first two are of first order in Γ̃dd. The third one is the energy dependent contribution:

VE = −
1

4
X

(
~ω 0

0 −~ω

)
X (3.69)

which is of second order. The last one comes from the Fock-term in the energy and is

therefore of third order

VF = −
1

4
X

(
u(p) − u(h) 0

0 u(p) − u(h)

)
X (3.70)
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Figure 3.4: The difference of different approximations for the m1 sumrule to the exact

result are shown. Solid red is the result of the m1 sumrule (3.65) which is practical

identical with the zero axis. Dashed green is the same for cTDHF. Short dashed blue

is the result of (3.59), and dotted magenta is the result of (3.61) in units of the Fermi-

energy, which should be zero.

Before we consider the effects of the individual terms, we have to discuss the input quanti-

ties. In the simplest approximation, as shown above, we are consistent with the simplified

FHNC scheme. Thus the effective interaction is a function of the static structure function

only and the m0 sumrule is fulfilled by construction. This changes as soon as we take ex-

change into account. Because by including exchange terms, we calculate additional FHNC

diagrams, which are not contained in the simplified FHNC scheme. This means the more

diagrams we calculate additional to the direct diagrams the less justified is the use of

simplified FHNC quantities. On the other hand using the quantities (Γ̃dd, X̃dd, etc.) out

of the full FHNC equations will not give the exact S(q), since in general we will not

sum all diagrams. But we are assured that including more diagrams will lead to a better

fulfilment of the m0 sumrule.

In figure 3.5 the described behavior can be seen. All the calculations where performed

for the three dimensional 3He at a density of ρ = 0.0166Å−3. The red lines correspond

to calculations with simplified FHNC quantities. The red full line is the result of the
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Figure 3.5: The plot shows the m0 sumrule in different approximations. The black

line shows the static structure function calculated via FHNC [33]. The red lines show

different approximations for the xRPA matrix, but all input quantities are taken from

simplified FHNC. In green are different approximations for the xRPA matrix, but all

input quantities are taken from full FHNC.

simple RPA, where Vph is the local effective interaction. This gives the best agreement

with S(q) as expected. If one adds simply the exchange term Vex one obtains a much

worse result (red long dashed line). This is to some extent an effect of the inconsistency of

the approximations. In one quantity, the interaction, we take the exchange into account

and in the other, the Hartree-Fock energy difference, we still neglect the Fock-term u(k).

Including the Fock-energy leads to a small improvement to the sumrule. Including next

the energy dependent part of the interaction VE again worsens the agreement, as expected.

The green lines show the result with input quantities taken from the full FHNC equations.

One sees that, when VE is included, it is advantageous to use the FHNC quantities.

In figure 3.6 and 3.7 one can see the result of the different approximations for the

dynamic structure factor. The starting point or the reference in both figures is the ordinary

RPA result with the effective interaction Vph (red line). In figure 3.6 the green line is the

result with simplest exchange term Vex and without the Fock-energy u(k). The more

accurate should be the calculation with the Fock-energy (blue line). The magenta line
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corresponds to the blue line, but is instead calculated with quantities out of the FHNC

equations. In figure 3.7 we compare the results with the energy dependent part of the

effective interaction VE . The green line is calculated with simplified FHNC quantities and

the blue line with the full FHNC quantities. To conclude this section we summarize the

effect of the exchange terms. We observe that inclusion of exchange lowers the position

of the collective mode slightly. This is in agreement with the experiment, which gives

a collective mode significantly below the RPA one [21, 2]. The strong damping of the

collective mode starts at lower momentum transfer, compared to RPA. This is the result

of two effects, first the lowering of the collective mode torward the p-h continuum due

to exchange effects. Second the up shift of the p-h continuum due to the inclusion of the

Fock-energy, which can be modeled by a effective mass of m = 0.84 in the kinetic energy.

3.8 An alternative transformation of the cTDHF

equation

The transformation given above is not mandatory. Rather we have a few possibilities

to transform the cTDHF equations. The difficulty is to find the best and what are the

criteria which determine the best. Here we propose a transformation that yields an energy

independent effective interaction. Let’s write the cTDHF matrix in the form

[
Ω +

1

2
ΩN +

1

2
NΩ +

(
Wph,p′h′ B

B∗ Wp′h′,ph

)]
=

[
1+N

] 1
2
[
Ω+Ṽp−h

][
1+N

] 1
2

, (3.71)

with

N =

(
Nph,p′h′ 0

0 Np′h′,ph

)
(3.72)

and

N = N −N (3.73)

The effective interaction is then

Ṽp−h = (1 + N)−
1
2

[(
1 +

1

2
N

)(
eph 0

0 eph

)(
1 +

1

2
N

)
−

1

4
N

(
eph 0

0 eph

)
N

+

(
Wph,p′h′ B

B∗ Wp′h′,ph

)]
(1 + N)−

1
2 −

(
eph 0

0 eph

)
(3.74)

This effective interaction is less appealing than in (3.22) due to the explicit appearance

of the single particle hole energies and due to the separate treatment of the B-channel.

But up to first order in N the dependence on the particle hole energy vanishes. An
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important advantage is that with this transformation the effective interaction is not energy

dependent. Omitting the B-matrix leads to a nice relation for the m0 sumrule. Note

that the B-matrix is zero anyhow for a good enough ground state theory. This leads

immediately to a decomposition of the response in δu
(1+)
ph and δu

(1−)
ph . Consequently the

final result is of the form

χ(q, ω) = χ̃(q, ω) + χ̃∗(q,−ω) (3.75)

which is an analytic property of the exact response, as derived in [39]. In that form the

sumrule is evaluated analytically. Since

χ̃(q, ω) = 1R (1 +Np1h1,ph)
1
2

[
eph − ~ω − iη + V A

ph,p′h′

]−1
(1 +Np′h′,p2h2

)
1
2 1C , (3.76)

it is easy to show that1

∫
d~ωℑm

[
eph − ~ω − iη + V A

ph,p′h′

]−1
= π1 (3.77)

With that the sumrule is cast into a form analog to eq. (3.57). It is now difficult to decide

whether this or the other transformation is better. If no approximations where made,

both forms are equivalent. Finally we summarize the pros and cons of the discussed

transformation.

+ Effective interaction is energy independent

+ If the B matrix is set to zero, this transformation keeps the ’diagonal’ form.

+ Compared to the previous transformation, a nice relation for the m0 sumrule is

obtained

− Diagrammatically not that rich as the original one (This becomes less important as

CBF matrix elements are calculated more accurately.)

The last point makes it less attractive for a numerical application. On the other hand, its

formal properties are very convincing. Once we have a good enough ground state, such that

the B-matrix is zero, one does not want to destroy this property by the transformation,

not at least to keep numerical speed. It is worth to put more time in determining the CBF

matrix elements, because once we have the matrices we only need one inversion for the

transformation and an eigenvalue decomposition for the determination of the spectrum

for a definite momentum transfer.

1First one needs the spectral decomposition of the matrix. The inversion is then simply done by taking

the reciprocal value of the eigenvalues. Since η is infinitesimal the imaginary part gives only a δ-function.

The integration is then easily performed.
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We are able to go one step further, in order to obtain an approximation of similar

simplicity than RPA. This is done by omitting exchange terms and Fock energies and set

the B-channel to zero (as would be the case for the exact ground state). We obtain

χ(TDAa)(q, ω) =
S

SF
κ

(+)
0 (q, ω)

1 + VscRPA(q)κ
(+)
0 (q, ω)

+
S

SF
κ

(−)
0 (q, ω)

1 + VscRPA(q)κ
(−)
0 (q, ω)

(3.78)

with

VscRPA(q) =
t(q)

SF (q)

(
1

SF (q)
−

1

S(q)

)
. (3.79)

Consequently and in order to be consistent we should also neglect the off diagonal part

of H in the A-channel i.e. Hph,p′h′ = δp,p′δh,h′eph. The result for the response function is

χ(TDAb)(q, ω) =

S2

S2
F

κ
(+)
0 (q, ω)

1 + ~ωΓ̃dd(q)κ
(+)
0 (q, ω)

+

S2

S2
F

κ
(−)
0 (q, ω)

1 + ~ωΓ̃dd(q)κ
(−)
0 (q, ω)

(3.80)

This response function, a type of a correlated Tamm-Dancoff approximation (cTDA),

fulfils the m0 and the m1 sumrule by definition. As in RPA there is no place for fitting

parameters, but this is expected, since the two sumrules are very restricting conditions

for the response function. For example if one want to lower the position of the collective

mode one has to add strength above the collective mode in order to fulfill both sumrules.

Thus this can only be done consistently by introducing multi pair excitations, which yield

a broad continuum at higher energies. In other words, the overestimation of the energy

of the collective mode is a result of the restriction to single p-h excitations. From that

we conclude that not an effective mass is the dominant effect for lowering the position

of the collective mode, it would rather be multi pair excitations which are responsible.

Therefore not an effective mass should be modified in order to fit an experiment but rather

the multi-pair continuum.

3.9 Overview and concluding remarks

In figure 3.8 a diagram is provided which gives a survey over the different approximations

and transformations given in this chapter. Starting from the equations of motion derived in

the Jastrow-correlated basis (cTDHF) we are already in a position to derive the density

response function. At this level pair excitations can be included by changing the CBF

matrix elements to energy dependent effectvie matrix elements. But more on that in the

next chapter.

RPA type equations are obtained by transformation to the density matrix elements of

the non interacting system, eq. (3.21). If no further approximations are made, we obtain
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expressions for the effective interaction in the direct and the exchange channel (xRPA). By

neglection of the Fock energy and the exchange interaction the ordinary RPA is obtained.

But there is no need to stick to the transformation (3.21). It is possible to find a

transformation in which the energy dependence is exactly diagonal, eq. (3.71). Making

the analog approximations that led to RPA, we end up with cTDA (3.78).

Finally replacing the particle hole band by its collective approximation, in both the

RPA and cTDA, the well known Feynman spectrum is obtained.
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Figure 3.6: The dynamic structure function at momentum transfers q = 0.4, 0.8, 1.2,

1.6, 2 and 2.4kF is plotted. See text for details.
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Figure 3.7: The basically same as in figure 3.6, only different approximations. See text

for details.
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Figure 3.8: Overview of the different approximations and transformations given in this

chapter.
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Chapter 4

Pair-excitations without exchange

In resent publications we showed that pair excitations play a crucial role in strongly cor-

related Fermi-fluids [7, 9]. The main effects are a lowering of the collective mode towards

the experimental value and a natural broadening of the collective mode. The broaden-

ing is result of the possible decay of the collective mode into pair excitations. Further

more the roton minimum is significantly lowered. This effect is especially pronounced in

two dimensional 3He, where the roton resharpens at the lower border of the PHB. This

observation has been confirmed experimentally [I].

In this chapter we only give an outline of the derivation. All the details and more

results are found in the publications [I, II].

4.1 Outline of the derivation

4.1.1 Transition density

The transition density as given in chapter 2 is easily extended to include pair fluctuations:

δρ(r; t) =
∑

ph

ρ0,ph(r)δu
(1)
ph (t) +

1

2

∑

pp′hh′

ρ0,pp′hh′(r)δu
(2)
pp′hh′(t)

=
∑

ph

ρ̃F
0,ph(r)

[
∑

p′h′

Mph,p′h′δu
(1)
p′h′(t) +

1

2

∑

p′p′′h′h′′

Mph,p′p′′h′h′′δu
(2)
p′p′′h′h′′(t)

]
.(4.1)

Defining a new one-particle one-hole amplitude

δv
(1)
ph (t) = δu

(1)
ph (t) +

1

2

∑

p′p′′h′h′′

M
(I)
ph,p′p′′h′h′′ δu

(2)
p′p′′h′h′′(t) . (4.2)

with

M
(I)
ph,p′p′′h′h′′ =

∑

p1h1

M−1
ph,p1h1

Mp1h1,p′p′′h′h′′ (4.3)

55
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Inserting this into the expression for the transition density gives

δρ(r; t) =
∑

php′h′

ρ̃F
0,ph(r)Mph,p′h′δv

(1)
p′h′(t) . (4.4)

The definition of the renormalized one-particle one-hole amplitude is vital for the deriva-

tion of the Euler-Lagrange equations. It leads to decoupled equations for the single pair

and double pair fluctuations.

4.1.2 The equations of motion including pair fluctuations

In the equation of motion for the single pair fluctuations an additional term, which de-

scribes the coupling to pair fluctuations, appears:

∑[
H ′

ph,p′h′ ∓ (~ω+iη)Mph,p′h′

]
δv

(1±)
p′h′ +

∑
H ′

pp′hh′,0 δv
(1∓)
p′h′ (4.5)

+
1

2

∑[
K

(ph)
p′p′′h′h′′,0 δu

(2∓)
p′p′′h′h′′ +Kph,p′p′′h′h′′ δu

(2±)
p′p′′h′h′′

]
= −2

∫
d3r ρ0,ph(r) hext(r;ω) .

The equations of motion in the pair channel are

−
∑[

Kpp′hh′,p′′p′′′h′′h′′′ ∓ (~ω + iη)M
(I)
pp′hh′,p′′p′′′h′′h′′′

]
δu

(2±)
p′′p′′′h′′h′′′

= 2
∑[

K
(p′′h′′)
pp′hh′,0δv

(1∓)
p′′h′′ +Kpp′hh′,p′′h′′δv

(1±)
p′′h′′

]
. (4.6)

In convolution approximation we obtain

M
(I)
pp′hh′,p′′p′′′h′′h′′′ ≈ δpp′′δp′p′′′δhh′′δh′h′′′ + δpp′′δhh′′ 〈p′h′′′| Γ̃dd |h

′p′′′〉

+ δp′p′′′δh′h′′′ 〈ph′′| Γ̃dd |hp
′′〉 + 〈p′h′′′| Γ̃dd |h

′p′′′〉 〈ph′′| Γ̃dd |hp
′′〉 .(4.7)

and

Kpp′hh′,p′′p′′′h′′h′′′ ≈ δpp′′δp′p′′′δhh′′δh′h′′′(eph + ep′h′)

+ δpp′′δhh′′

[
eph 〈p

′h′′′| Γ̃dd |h
′p′′′〉

]

+ {pp′′hh′′ ↔ p′p′′′h′h′′′} . (4.8)

The coupling to pair fluctuations is described on the one hand by the off diagonal three

body vertex K
(ph)
p′p′′h′h′′,0 which vanishes for q > 2 and can safely be neglected as shown

in [II]. Concentrating on the important physics and keeping the results compact we omit

this term in the following derivation. The other is the important three body vertex, which

is in the localized form

Kq,q′q′′ =
S(q′)S(q′′)

SF (q)SF (q′)SF (q′′)

~
2

2mN2

[
q · (q′X̃dd(q

′) + q′′X̃dd(q
′′))
]
. (4.9)
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4.1.3 Solution of the pair equation

The exact solution of the two-pair equation is presented in [II]. Here we present an ap-

proximate solution which captures the important physics.

The pair equation is simplified by convoluting the whole equation with

M−1
ph,p′′h′′M

−1
p′h′,p′′′h′′′ =

[
δp,p′′δh,h′′ − 〈ph′′| X̃dd |hp

′′〉
] [
δp′,p′′′δh′,h′′′ − 〈p′h′′′| X̃dd |h

′p′′′〉
]

which is the inverse of M
(I)
pp′hh′,p′′p′′′h′′h′′′. As result the pair equation becomes diagonal in

the energy

Epp′hh′,p′′p′′′h′′h′′′(ω)δu
(2±)
p′′p′′′h′′h′′′

≡ [−eph − ep′h′ ± (~ω + iη)] δu
(2±)
pp′hh′

+
∑

ep′′h′′

[
〈ph′′|Xdd |hp

′′〉 δu(2±)
p′′p′h′′h′ + 〈p′h′′|Xdd |h

′p′′〉 δu(2±)
pp′′hh′′

]

=
∑

M−1
ph,p′′h′′M

−1
p′h′,p′′′h′′′Kp′′p′′′h′′h′′′,p4h4

δv
(1±)
p4h4

. (4.10)

Here the factor 2 cancels due to symmetry of the pair amplitude δu
(2±)
pp′hh′ = δu

(2±)
p′ph′h. An

approximation which captures the right physics is obtained by expanding the pair equation

in a perturbation series, whose zeroth order is the collective approximation:

E
(0)
pp′hh′,p′′p′′′h′′h′′′(ω) = δp,p′′δp′,p′′′δh,h′′δh′,h′′′ [−ε(q) − ε(q′) ± (~ω + iη)] (4.11)

The first order perturbation

E
(1)
pp′hh′,p′′p′′′h′′h′′′(ω) = δp,p′′δp′,p′′′δh,h′′δh′,h′′′

×

[
−eph +

~
2q2

2mSF (q)
− ep′h′ +

~
2q′2

2mSF (q′)
± (~ω + iη)

]
(4.12)

gives then the two particle two hole continuum. Combining these two terms leads to a

two particle two hole continuum centered around the Feynman dispersion. We are able to

invert the operator (up to first order) acting on the pair amplitudes

δu
(2±)
qq′ =

SF (q′′)µ
(+)
0

(
q, q′,±ω + ~

2m
[q2X(q) + q′2X(q′)]

)

S(q)S(q′)
NKqq′,q′′δv

(1±)
q′′ .

Where we introduced the pair analog of the partial Linhard function µ
(+)
0

µ
(+)
0 (q, q′, ω) =

1

N2

∑

hh′

n(h)n(h′)n̄(h+ q)n̄(h′ + q′)

~ω − eph − ep′h′ + iη
. (4.13)

This solution is inserted in the single pair equation and thus removes the explicit

dependence on the pair fluctuations. At the end one arrives at a form identical to (3.21).
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The only difference is a new definition of W, which is now ω dependent. Thus the final

equation of motion:

−2

∫
ρ0,ph(r)hext(r, ω) −

∑[
H ′

ph,p′h′ ∓ (~ω + iη)Mph,p′h′

]
δv

(1±)
p′h′ −

∑
Hpp′hh′,0δv

(1∓)
p′h′

+
∑

K2
q,q′q′′

SF (q)2SF (q′)SF (q′′)µ
(+)
0

(
q′, q′′,±ω + ~

2m
[q′2X(q′) + q′′2X(q′′)]

)

2S(q′)S(q′′)
N3δv(1±)

q

= SF (q)∆WA(q,±ω)δv(1±)
q (4.14)

In matrix notation this changes (3.19) to

W(ω) =

(
Wph,p′h′(ω) Wpp′hh′,0(−ω)

W0,pp′hh′(ω) Wp′h′,ph(−ω)

)

=

(
Wph,p′h′ + ∆WA(q, ω) Wpp′hh′,0 + ∆WB(q, ω)

W0,pp′hh′ + ∆WB(q,−ω) Wp′h′,ph + ∆WA(q,−ω)

)
(4.15)

The approximation K
(ph)
p′p′′h′h′′,0 = 0 implies ∆WB(q, ω) = 0. The transformation to the

RPA form is completely analog to (3.21), except that the effective interaction matrix has

no longer identical entry’s.

Vp−h =

(
VA(q, ω) VB(q,−ω)

VB(q, ω) VA(q,−ω)

)
(4.16)

4.1.4 Response function

This makes the response function only a little more complicated than in RPA. We obtain

χ(q;ω) = N(q;ω)/D(q;ω)

N(q;ω) = κ0(q;ω) + κ∗0(q;−ω)

− κ0(q;ω)κ∗0(q;−ω)
[
Ṽ

A
(q;ω) + Ṽ ∗

A
(q;−ω) − Ṽ

B
(q;ω) − Ṽ ∗

B
(q;−ω)

]

D(q;ω) = 1 − κ0(q;ω)Ṽ
A
(q;ω) − κ∗0(q;−ω)Ṽ ∗

A
(q;−ω)

+ κ0(q;ω)κ∗0(q;−ω)
[
Ṽ

A
(q;ω)Ṽ ∗

A
(q;−ω) − Ṽ

B
(q;ω)Ṽ ∗

B
(q;−ω)

]
. (4.17)

with the partial Lindhard functions

κ0(q;ω) ≡
1

N

∑

h

n̄pnh

~ω − eph + iη
(4.18)

which relate to the full Lindhard function

χ0(q;ω) = κ0(q;ω) + κ∗0(q;−ω) . (4.19)

It is spelled out explicitly and extensively discussed in appendix B.2.



Chapter 5

The full theory: Pair-excitations and

exchange

Now we are able to combine the results of the last two chapters, which means taking

exchange and double pair excitations into account. First we show how to properly include

double pair excitations in the xRPA formalism. After that we apply the theory to 3He in

three dimensions. (The generalization to 2D systems is no problem.) Then we make the

postphoned comparison with the experiment[21, 17].

5.1 The transition density

The expression for the transition density given in eq. (4.1) is exact. In the last chapter we

neglected all exchange diagrams. Now we want to investigate what changes if we include

exchanges. In principle it is possible to include all exchange diagrams. But we argue that

since the effect of double pair excitations and the effect of exchange diagrams alone is

small, the effect of exchanges in the double pair channel is negligible. Therefore we can

safely neglect exchange diagrams in the double pair channel. We show now that with this

approximation the explicit expression for M
(I)
ph,p′p′′h′h′′ is unchanged, regardless of whether

we take exchange in Mph,p′h′ into account or not. For that reason we have to execute

Mph,p′p′′h′h′′ =
∑

p1h1

Mph,p1h1
M

(I)
p1h1,p′p′′h′h′′ (5.1)

and see what diagrams are generated if we include exchange diagrams in Mph,p1h1
. The

result of this operation is shown in figure 5.1. We see that all diagrams generated are

indeed part of Mph,p′p′′h′h′′.

If we look at the single pair – double pair coupling

Kph,p′p′′h′h′′ = Hph,p′p′′h′h′′ −
∑

p1h1

Hph,p1h1
M

(I)
p1h1,p′p′′h′h′′ , (5.2)
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p h

p′ h′

− + +1

2 −

− − + +−−1

2
+1

2

+ + − −1

2
+1

2 −+

+(p′h′ ↔ p′′h′′)

p′′ h′′

Figure 5.1: The figure shows the diagrams generated by eq. (5.1).The first line is

M
(I)
ph,p′p′′h′h′′ . The second line is generated by multiplying all direct diagrams in Mph,p1h1

.

The last line is the result of multiplication of exchange diagrams. We observe that in

doing so we generate some exchange diagrams of Mph,p′p′′h′h′′ .

we observe that the single pair quantity Hph,p1h1
enters. To be rigorous one has to take

the exchange in that quantity into account, but as we mentioned earlier it will only give

a small effect on the response, since two small quantities come together. Therefore we

neglect it in the numerical evaluation. (Altough it should be no big problem to include

it.) Thus we end up with the same vertex as in the previous chapter (4.9).

Using the notation introduced in chapter 3 we obtain

Vp−h = V
(d)
p−h + Vex + VE + VF + Vpair(ω) (5.3)

with

Vpair(ω) =

[
1 +

1

2
N

]−1
(

∆WA(q, ω) ∆WB(q,−ω)

∆WB(q, ω) ∆WA(q,−ω)

)[
1 +

1

2
N

]−1

(5.4)

The inclusion of exchanges is possible as long as they don’t affect the solution of the pair

equation. In a next step it is possible to include the exchange terms in the transforma-

tion. This is possible without much computational effort. If one wants to include further

exchange diagrams, this is only possible with enormous additional computational effort.

This has to be balanced against the gain in accuracy of the result. As mentioned earlier,

not much change in the result is expected. Nevertheless we want to show how in principle

this can be done. In a first step exchanges are taken into account in the various elements

of the tree body vertex Kph,p′p′′h′h′′. As a consequence this quantity becomes non local. (Of
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course one can localize it again by calculating the Fermi sea average. But this will have a

negligible effect on Kq,q′q′′ , e.g. Hq,q′q′′ is totally unchanged, since it is already exact.) The

non locality of the part that couples to the one body quantity δvph is no problem, because

this is treated in the same way as the other parts of the interaction. The time consuming

part is the numerical solution of the pair equation, which is beyond current possibilities.

One thing left to mention is that, if we want to include exchanges in ∆WA(q, ω) and

∆WB(q, ω) these terms become non local and can not be written as antisymmetrized

matrix elements. For example

∆WA,php′h′ 6= 〈ph′|∆WA |hp′〉a (5.5)

5.2 Results and comparison with the experiment

We applied the procedure described above to 3He in 3 dimensions at saturation density.

In fig. 5.2 we compare the different approximations. The modification of the spectrum

due to the inclusion of exchange is most interesting in the low momentum transfer region

q < 2kF . In this region we can compare with the experiment [21, 17, 2] as shown in figure

5.3 and 5.4. For the interaction we took the most important terms in the interaction

matrix into account:

Vp−h = V
(d)
p−h + Vex + VE + Vpair(ω) (5.6)

The agreement is very exciting. Most interestingly is the effect of the inclusion of the

Fock-term in the single particle excitations. It moves the upper border of the PHB to

higher energies (fig. 5.4), which results in an earlier appearance of Landau-damping, as

indicated by the width of the collective mode observed in experiments [17, 21]. (Fore more

details see applications chapter in [II].)

We know about the weakness of the Fock-energy, which should be viewed as an average

over the real excitation energies, which are of course dependent on the starting point in the

Fermi-sphere. In [10, 35, 23, 22] it has been shown that the effective mass of the excitation

energy is strongly peaked close to the surface of the Fermi-sphere. The ansatz made in

[10, 35] for the calculation of the effective mass, suggests that with the inclusion of pair

excitations we are able to properly account for this effect. Work in that direction is in

progress. It remains to mention that the ad hoc introduction of a constant effective mass

of the order of the Fermi-surface effective mass is clearly oversimplified and inconsistent,

not only with the first two sumrules, but also with experiments.

Despite the excellent agreement with the experiment some words of caution are in

order. The energy dependent correction of the effective interaction VE includes some

additional diagrams of higher order (second order), but not all diagrams. This means
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while the inclusion of VE is an apparently good approximation for Helium it may not be

that good for electrons. Due to the long range of the Coulomb interaction the limiting

behavior has to be checked very carefully in order to be precise.
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Figure 5.2: Comparison of different levels of implementation of our theory at momen-

tum transfers q = 0.4; 0.8; 1.2; 1.6; 2.0; 2.4 kF .
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Figure 5.3: Comparison of the experiment[21, 17] and theory at momentum transfers

q = 0.4; 0.6; 0.8; 1.0; 1.2; 1.4 Å−1.
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(squares), [17] (solid squares) and [2] (circles) with the theory (red line). The upper

border of the non interacting PHB is indicated by the green line. The cained blue line

is the upper border of the PHB calculated with CBF theory.
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Chapter 6

Conclusions and future prospects

The work on this thesis was started with the objective to investigate the influence of

exchange effects on the density-density response function. It was expected that the in-

clusion of exchange terms has no big influence on the result, which would justify their

omission. However we have shown that exchange effects modify the excitation spectrum

in a way which is in accordance with the experiment and that their inclusion lead to a

better understaning of the physics.

It has been shown that a change in the single particle excitation energies needs to be

balanced with exchange terms in order to give the correct q → 0 behavior and to keep

the fulfilment of the sumrules. Equally important is the insight into the weakness of the

simple RPA treatment in describing the dynamics of strongly correlated systems like 3He.

We have rigorously shown that including exchange terms at the cTDHF level leads to

energy dependent interactions in the RPA equations. With this understanding it becomes

clear that the introduction of a constant effective mass of the order of m∗ = 3m in order

to fit the experimentally observed position of the collective mode, in the standard RPA

is physically meaningless and any other fitting function is as well justified.

A different part of my thesis was to appropriately account for pair excitations. The

work on this topic has been developed and successfully applied to different systems dur-

ing the last years. It turned out that this is the most important part in arriving at a

quantitative microscopic theory. Beside the expected lowering of the collective mode it

also predicts a new phenomena, the reemerging of the collective mode below the PHB.

Experimental results support this finding, which will have far reaching consequences and

which await further investigation. Our results in [II] also show that the collective mode,

when entering the PHB, becomes strongly damped, known as Landau damping. Addi-

tionally, we observed a slight kink in the dispersion of the collective mode. Application

of these findings to the experimental results [17, 21] suggests that the collective mode is

always close to the PHB and enters the PHB at relatively low momentum transfer, which
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could simply be explained by an effective mass slightly lower than the bare mass m∗ < m

contrary to common belief.

Finally, we combined these two approaches. It is remarkable that the CBF single par-

ticle energies can be fitted by an effective mass of m∗ = 0.84m, which is in accordance

with the argumentation above.

The agreement with the experiment is satisfactory and makes us self-confident for

further investigations. The most obvious extension is the inclusion of selfenergy corrections

in the excitations spectrum.[26] As already mentioned, this has to be done in a proper

way in adjustment with the exchange channel. Work in this direction is in progress.

Future prospects

The results show that we have a powerful tool to describe quantum fluids on a microscopic

basis. The question now is in which direction we want to develop this tool. We are at the

crossroads with many different possibilities. The most promising are:

• Spin-density response: Neutron scattering experiments are sensitive to the relative

spin-orientation too. This means that the spin-density response is also measured.

But up to now no microscopic theory exists which is able to describe these excitations

in a quantitative way. We believe that inclusion of exchange terms is the key, which

allows us to make progress in this direction. Ideally, one should start from a spin-

dependent FHNC calculation. Unfortunately this is a very demanding task and it

is not yet clear if it can be done within the FHNC formalism [16]. If this is not

possible one has to derive a new set of equations and see whether these can be

solved in reasonable time. Work in this direction is in progress.

• Magnetic excitations: This point is closely related to the previous one. It should

be possible to describe spin-waves, which are elementary excitations in an external

magnetic field.

• Electrons in a solid: Instead of using a plane wave slater determinant one could also

use a Slater determinant of band structure functions as starting point. It remains

to show whether these need to be Jastrow correlated or not. However, the extension

of FHNC theory to electrons in a lattice is a demanding task.

• Application to nuclear interactions: Exchange effects are especially important in

nuclear matter. N.-H. Kwong has investigated this topic in his PhD thesis [36].

It would be interesting to extend the FHNC approach to nuclear interactions and

consequently apply the theory developed in this thesis to this challenging problem.



Appendix A

The FHNC and FHNC’ equations

A.1 The FHNC equations

The full set of equations are shown here for reference. The equations for the non-nodal

quantities are expressed in coordinate space:

Xdd(r) = exp [u(r) +Ndd(r) + Edd(r)] − 1 −Ndd(r)

Xde(r) = [1 + Γdd(r)] [Nde(r) + Ede(r)] −Nde(r)

Xee(r) = [1 + Γdd(r)]

[
−

1

ν
L2(r) +Nee(r) + Eee(r)

]
−Nee(r)

+ [1 + Γdd(r)] [Nde(r) + Ede(r)]
2

Xcc(r) = −
1

ν
L(r)Γdd(r) + Ecc(r) . (A.1)

The four nodal quantities are calculated in momentum space:

Ñdd(k) = Γ̃dd(k) − X̃dd(k)

=
[
Γ̃dd(k) + Γ̃de(k)

]
X̃dd(k) + Γ̃dd(k)X̃de(k)

Ñde(k) = Γ̃de(k) − X̃de(k)

= Sd(k) − 1 − Γ̃dd(k) − X̃de(k)

Ñee(k) = Γ̃ee(k) − X̃ee(k)

= S(k) − 2Sd(k) + 1 − X̃ee(k) + Γ̃dd(k)

Ñcc(k) = −X̃cc(k)

[
1
ν
l̃(k) − X̃cc(k)

1 − X̃cc(k)

]
, (A.2)
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where we used

Sd(k) =
1 − X̃de(k)[

1 − X̃de(k)
]2

−
[
1 + X̃ee(k)

]
X̃dd(k)

Γ̃dd(k) =
X̃dd(k)[

1 − X̃de(k)
]2

−
[
1 + X̃ee(k)

]
X̃dd(k)

Γ̃de(k) = Sd(k) − 1 − Γ̃dd(k)

Γ̃ee(k) = S(k) − 1 − Γ̃dd(k) − 2Γ̃de(k)

(A.3)

and in coordinate space

L(r) = l(rkF ) − ν [Ncc(r) + Ecc(r)]

Γdd(r) = exp [u(r) +Ndd(r) + Edd(r)] − 1 . (A.4)

The radial distribution function expressed in terms of FHNC quantities is

g(r) = 1 +Xdd(r) +Ndd(r) + 2Xde(r) + 2Nde(r) +Xee(r) +Nee(r)

= [1 + Γdd(r)]

{
−

1

ν
L2(r) +Nee(r) + Eee(r) + [1 +Nde(r) + Ede(r)]

2

}
.(A.5)

and the static structure factor assumes the form

S(k) =
1 + X̃ee(k)[

1 − X̃de(k)
]2

−
[
1 + X̃ee(k)

]
X̃dd(k)

(A.6)

A.2 The FHNC’ equations

Now X ′
dd(r) is obtained by replacing one of the parallel connections by a primed quantity:

X ′
dd(r) = eu(r)+Ndd(r)+Edd(r)[vJF (r) +N ′

dd(r) + E ′
dd(r)] −N ′

dd(r) (A.7)

This is the only equation were the potential enters. Next we have to consider the dia-

grammatic contribution from the TJF term. This is obtained by replacing, in turn, every

connected pair of exchange lines l(rijkF )l(rikkF ) by ~2

4m
∇2l(rijkF )l(rikkF ) in the cluster

expansion of g(r). This means that the FHNC equations have to be modified at places

where l(rkF ) appears. For example in the last equation in (A.1)

X ′
cc(r) = −

1

ν
L(r)Γ′

dd(r) + [1 + Γdd(r)]E
′
cc(r) + Γdd(r)

[
N ′

cc(r) −
~

2

4mν
∇2l(rkF )

]
(A.8)
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For reference the remaining two non-nodal equations are

X ′
de(r) = Γ′

dd(r) [Nde(r) + Ede(r)] + [1 + Γdd(r)]E
′
de(r) + Γdd(r)N

′
de(r)

X ′
ee(r) = Γ′

dd(r)

[
−

1

ν
L2(r) +Nee(r) + Eee(r) + [Nde(r) + Ede(r)]

2

]

+2 [1 + Γdd(r)] [L(r) [N ′
cc(r) + E ′

cc(r)] + [Nde(r) + Ede(r)] [N
′
de(r) + E ′

de(r)]]

+ [1 + Γdd(r)]E
′
de(r) + Γdd(r)N

′
de(r)

−
~

2

2mν
[1 + Γdd(r)]

[
L(r)∇2l(rkF ) + |∇l(rkF )|2

]
(A.9)

The nodal equations are obtained by a linearization1 of the corresponding FHNC equa-

tions:

Ñ ′
ij(k) =

∑

kl

δÑij(k)

δX̃kl(k)
X̃ ′

kl(k) (A.10)

This leads directly to

Ñ ′
dd(k) =

[
S2

d(k) − 1
]
X̃ ′

dd(k) + 2Γ̃dd(k)Sd(k)X̃
′
de(k) + Γ̃2

dd(k)X̃
′
ee(k)

Ñ ′
de(k) = Sd(k) [S(k) − Sd(k)] X̃

′
dd(k)

+
[
Γ̃dd(k) [S(k) − Sd(k)] + Sd(k)

[
Sd(k) − Γ̃dd(k)

]]
X̃ ′

de(k)

+Γ̃dd(k)
[
Sd(k) − Γ̃dd(k)

]
X̃ ′

ee(k)

Ñ ′
ee(k) = [S(k) − Sd(k)]

2 X̃ ′
dd(k)

+
[
Γ̃dd(k) [S(k) − Sd(k)] + Sd(k)

[
Sd(k) − Γ̃dd(k)

]]
X̃ ′

de(k)

+

[[
Sd(k) − Γ̃dd(k)

]2
− 1

]
X̃ ′

ee(k)

Ñ ′
cc(k) =




1 − 1
ν
l̃(k)

[
1 − X̃cc(k)

]2
− 1


 X̃ ′

cc(k) (A.11)

The only thing that is left is the connection

Γ′
dd(r) = X ′

dd(r) +N ′
dd(r) (A.12)

With this we derived the FHNC’ equations. Finally the Euler-Lagrange equation in mo-

mentum space is
~

2k

4m
[S(k) − 1] + S ′(k) = 0 (A.13)

with

S ′(k) =
∑

i∈{dd,de,ee}

∂S(k)

∂X̃i(k)
X̃ ′

i(k) . (A.14)

1This means not that this is an approximation, rather it is a consequence of the β-derivative algorithm.

(chain rule)
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A.2.1 Simplified FHNC

Sometimes a simplified version of the FHNC-EL equations is useful. The simplified version

yields the correct long wave length behavior by definition. In this limit we have

X̃de(k) = O(k) as k → 0 (A.15)

1 + X̃ee(k) = SF (k) + O(k2) as k → 0 (A.16)

as shown in [33]. Thus we obtain for the static structure factor

S(k) =
SF (k)

1 − SF (k)X̃dd(k)
= SF (k)

[
1 + Γ̃dd(k)SF (k)

]
(A.17)

in the simplified FHNC. The other quantities are obtained by using the above mentioned

long wave length properties. In the determination of CBF matrix elements it is sometimes

opportune to use the static structure as input quantity2 and calculate with the above

equation the corresponding simplified FHNC quantities.

2Obtained for example from the experiment[24], FHNC or Monte Carlo calculations[11].



Appendix B

The partial Lindhard function and

its pair analog

B.1 k-space integration

In this thesis we often have to sum over 1
N

∑
h n(h)n̄(h+ q)f(h,q). We can transform the

sum to an integral

1

N

∑

h

=
νV

8π3N

∫
d3h =

ν

8π3ρ

∫
d3h =

6π2

8π3k3
F

∫
d3h =

1

VF

∫
d3h, (B.1)

here we used ρ = N
V

=
νk3

F

6π2 where ν is the number of spin states and that VF =
4πk3

F

3
is

the volume of the Fermi-sphere. It is convenient to represent the momenta in units of kF .

If f(h,q) depends only on the dot product hq and q, which is often the case, we can

map the three dimensional integral to a one dimensional in the following way:

• introduce polarcoordinates, with the z-axis in direction of q

z

r
h

q

Figure B.1: The grey marked region indicates the integration range. The new coordi-

nate system is also drawn.
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• shift the origin about −q/2. This delivers h → h̃ + q

2

• then integrate over φ and r. This is possible because now f depends only on z, the

projection of h on q

Now it is possible to write the integral in the following form

2πq

∫

Lq

dzN(z)f(z,q) (B.2)

with

N(z) =






1
2q

(
1 − (z − q

2
)2
)

−1 + q
2
< z < 1 + q

2
, q > 2

1
2q

(
1 − (z − q

2
)2
)

1 − q
2
< z < 1 + q

2
, q < 2

z 0 < z < 1 − q
2
, q < 2

(B.3)

and

Lq =

{ {
z : −1 + q

2
< z < 1 + q

2

}
q > 2{

z : 0 < z < 1 + q
2

}
q < 2

. (B.4)

We test the upper procedure with the simplest function one can imagine, namely f = 1.

The result is well known and gives:

SF (q) =
3q

4
−
q3

16
for q < 2 (B.5)

and otherwise one.
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B.2 The Lindhard function

The Lindhardfunction is defined as

χ0(q, ω) =
1

N

∑

h

(
n(h)n̄(h + q)

~ω − eh+q,h + iη
−

n(h)n̄(h + q)

~ω + eh+q,h + iη

)
. (B.6)

It can be divided into two parts:

κ
(+)
0 (q, ω) =

1

N

∑

h

n(h)n̄(h+ q)

~ω − eh+q,h + iη
(B.7)

and

κ
(−)
0 (q, ω) = −

1

N

∑

h

n(h)n̄(h + q)

~ω + eh+q,h + iη
(B.8)

with χ0 = κ
(+)
0 + κ

(−)
0 . To calculate χ0 we need Dirac’s relation

1

ω − e± iη
= P

1

ω − e
∓ iπδ(ω − e). (B.9)

Here P indicates the principal value of the integral. There are some ways to calculate

χ0, one possibility is to introduce cylindrical polar coordinates as mentioned above. The

calculation is now straight forward and yields for q < 2:

ℜeκ(+)
0 (q, ω) =

3

4eF

{
−

1

2
+
ω

4q

(
1 + 2 lnω − 2 ln | − 2q + q2 + ω|

)

+
1

2q

(
−1 +

(
ω

2q
−
q

2

)2
)

ln

∣∣∣∣∣
1 + q

2
− ω

2q

1 − q
2
− ω

2q

∣∣∣∣∣

}
(B.10)

and for q > 2

ℜeκ(+)
0 (q, ω) =

3

4eF

(
−

1

2
+

ω

2q2
−

1

2q
(−1 + ν2

+) ln

∣∣∣∣
1 + ν+

1 − ν+

∣∣∣∣
)
. (B.11)

It is now easy to calculate ℜeχ0(q, ω) when one uses the symmetry relation

ℜeκ(−)
0 (q, ω) = ℜκ(+)

0 (q,−ω). We have also introduced the quantity ν± = − q
2
± ω

2q
.

ℜeχ0(q, ω) =
3

4eF

(
−1 +

1

2q
(1 − ν2

+) ln

∣∣∣∣
1 + ν+

1 − ν+

∣∣∣∣−
1

2q
(1 − ν2

−) ln

∣∣∣∣
1 − ν−
1 + ν−

∣∣∣∣
)

(B.12)

and

ℑmχ0(q, ω) = −
1

eF

3π

8q





1 − ν2
+ q > 2, q2 − 2q < ω < q2 + 2q

1 − ν2
+ q < 2, −q2 + 2q < ω < q2 + 2q

ω q < 2, 0 < ω < 2q − q2

. (B.13)



76APPENDIX B. THE PARTIAL LINDHARD FUNCTION AND ITS PAIR ANALOG

Finally we want to list some usefull properties of the Lindhard-function:

χ0(q, ω) = χ∗
0(q,−ω) (B.14)

ℜeκ(+)
0 (q,−ω) = ℜeκ(−)

0 (q, ω) (B.15)

ℑmκ(+)
0 (q,−ω) = −ℑmκ(−)

0 (q, ω) (B.16)

ℑmκ(+)
0 (q, ω) = ℑmκ(+)

0 (q, ω)Θ(ω) (B.17)

ℑmκ(−)
0 (q, ω) = ℑmκ(−)

0 (q, ω)Θ(−ω). (B.18)
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B.3 The pair analog of the partial Lindhard function

The calculation of µ proceeds along the same lines as for the partial Lindhard function.

B.3.1 Guidance for calculation

Let’s recall the definition of µ
(+)
0

µ
(+)
0 (q, q′, ω) =

1

N2

∑

hh′

n(h)n̄(h + q)n(h′)n̄(h′ + q′)

~ω − eph − ep′h′ + iη
. (B.19)

Summation over h′ gives

µ
(+)
0 (q, q′, ω) =

1

N

∑

h

n(h)n̄(h+ q)κ
(+)
0 (q′, ω − 2hq − q2), (B.20)

where we used the definition (B.7). Following the instructions given in B.1 we can write

(B.20) as

µ
(+)
0 (q, q′, ω) =

3q

2

∫

Lq

dzN(z)κ
(+)
0 (q′, ω − 2zq). (B.21)

We can divide the integration in two parts:

• ℜeκ(+)
0 : We have to distinguish four regions of the q, q′ plane for the integration. This

reduces to three, if one uses the symmetry q ↔ q′. Since N(z) is only a polynomial

in z and ℜeκ(+)
0 some ln-function the basic integral we have to solve is

∫
dzzn ln (z + a) =

zn+1

(n+ 1)2

(
−1 +2 F1

[
n + 1, 1, 2 + n,−

z

a

]
+ ln (z + a)

)
,

(B.22)

where 2F1 is the Hypergeometric function. Now we collect all terms together and

get a real long expression.

• ℑmκ(+)
0 : Here we choose a different approach, because we have only four different

integrals of a polynomial function. So they are easy to calculate, but the integration

range makes some problem. Hence, we get many distinctions of cases.

B.3.2 Useful properties

It is sometimes usefull to know the behavior of µ for small q. From equation (B.20) we

obtain for q << 1

µ
(+)
0 (q, q′, ω) ≈ κ

(+)
0 (q′, ω)

1

N

∑

h

= κ
(+)
0 (q′, ω)SF (q). (B.23)
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The sumrule for µ
(+)
0 looks like

∫
dωℑmµ(+)

0 (q, q′, ω) = −πSF (q)SF (q′), (B.24)

where we have to use ∫
dωℑmκ+

0 (q, ω) = −πSF (q). (B.25)
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2 

Understanding the quantum properties of many-body systems is a major goal of 

present Science, and significant advances have been made in the description of the 

ground state of interacting particles obeying Bose or Fermi statistics. Bose-Einstein 

condensates, the Fermi liquid state, and superconductivity, are examples of general 

interest. The concept of elementary excitations, introduced by Landau, provides an 

elegant and powerful tool for unveiling the structure of strongly interacting 

matter. For this reason, many studies have been devoted to the dynamics of the 

strongly interacting quantum fluids: liquid 4He (bosons) and 3He (fermions). A 

milestone for understanding correlated bosons was the observation of the 

“phonon-roton” collective mode of liquid 4He, predicted by Landau1 to explain the 

system’s thermodynamics. For fermions, the situation is more complicated, since 

the spectrum hosts two types of modes: collective (“zero-sound” in 3He, or 

“plasmon” in charged systems), and incoherent particle-hole (PH) excitations. 

Both are described by Landau’s theory of Fermi liquids2 in the small wave-vector/ 

low energy region of the spectrum. At higher wave-vectors/energies, the collective 

mode enters the PH band, where it is strongly damped2,3. So far, it was thus 

believed that the dynamics at high wave-vectors is essentially incoherent. Using a 

monolayer of liquid 3He, we report here the first observation of a roton-like 

minimum in a Fermi liquid. We find that the collective mode reappears as a well 

defined excitation beyond the PH band. Moreover, we provide a new theoretical 

framework where we introduce intermediate states that are not describable by the 

quantum numbers of a single (quasi-)particle, leading to an accurate interpretation 

of the spectra measured for 3He films. By exploring the dynamics of Fermi many-

body systems in the region outside the scope of Landau’s theory, we open new 

perspectives in the understanding of highly correlated fermions. 

 



3 

Quantum many-body systems are ubiquitous in nature. The identification of their 

ground state and the description of their quantised elementary excitations is a 

cornerstone of modern Physics1,4. Nuclei, metals, semiconductors, and neutron stars, are 

examples of quantum liquids. Their properties depend, among others, on the quantum 

statistics obeyed by the particles (electrons, nucleons, atoms), leading to the 

classification in terms of Bose or Fermi systems. The road from the Bose or Fermi gas 

to their strongly interacting analogue, however, was not smoothly paved, and 

considerable attention has been devoted to correlated quantum systems1-4. The interplay 

between quantum statistics and interactions in many-body quantum systems is the 

central theme of this Letter.  

Our work is concerned with the helium liquids, the canonical examples of 

quantum fluids. 4He is a boson, while 3He is, due to its nuclear spin ½, a fermion. At 

2.17 K, 4He undergoes a Bose-Einstein condensation to the superfluid state. Liquid 3He, 

however, remains a normal Fermi liquid down to millikelvin temperatures, where 

Cooper pairs are formed and Bose-Einstein condense into several superfluid phases. It is 

neutral, but otherwise analogous to the conduction electrons in a metal. Clearly, Bose 

and Fermi liquids behave differently, and are thus expected to sustain very different 

excitations.  

The elementary excitations of a Bose liquid have been described by Landau1. 

Their dispersion relation (Figure 1) shows a linear “phonon” mode, which evolves 

continuously as a function of the wave-vector, displaying a pronounced “roton” 

minimum1,5. The excitations remain well defined even at atomic wave-vectors. The 

physical origin of the roton minimum is the incipient localisation of the particles under 

the effect of the interactions6. Modern many-body theories have been successful in 

describing the dynamics of Bose fluids under different conditions of density and 

dimensionality: bulk, films, or droplets7-9.  
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The elementary excitations of liquid 3He are described, at small wave-vectors, by 

Landau’s Fermi liquid theory2,10. A “particle-hole” (PH) elementary excitation is 

created, at zero temperature, by removing a particle from the Fermi sphere, thus creating 

a hole, and placing it in an empty state outside the Fermi sphere, according to Pauli’s 

exclusion principle. PH states are confined in the spectrum (Figure 2) within the 

particle-hole band (PHB). The boundaries of the PHB for a non-interacting system (the 

Fermi “gas”) are Emax,min / EF  =  (k/kF)2 ± 2 (k/kF)  where EF = ħ2kF
2 / 2m is the Fermi 

energy, k the excitation wave-vector, kF the Fermi wave-vector, and m the (bare) mass 

of a particle.  

Landau’s theory predicts that an interacting system will behave as a Fermi gas 

with renormalized parameters. In particular, an effective mass m* is assigned to the 

fermionic “quasi-particles”. The theory describes well10 the low temperature properties 

of bulk liquid 3He, where m*, depending on the liquid pressure, varies from 3 to 6 times 

m, the bare mass of a 3He atom. Therefore, the PHB is expected to shift to energies well 

below those calculated for the non-interacting system. This picture, as discussed later, 

does not apply at high wave-vectors: substantial mass enhancement is limited to the 

vicinity of the Fermi surface10-14. 

Fermi liquids also sustain a density collective mode, zero-sound, described by 

Landau as an oscillation of the whole Fermi sphere2,10. Contrarily to ordinary sound, its 

frequency is higher than the collision rate. First detected by ultrasonic techniques, it has 

been investigated in detail by neutron scattering10,14-16. Zero-sound has a linear 

dispersion relation, above the PHB, then a negative deviation at intermediate wave-

vectors, and finally enters the PHB, where this mode was believed to disappear, due to 

Landau-damping (decay into PH excitations).  
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The corresponding excitation in electron fluids is the plasmon. In spite of 

differences due to charge (a gap is observed at zero wave-vector), the physics is the 

same2. In particular, the plasmon dispersion curve is observed to enter the PHB, and to 

disappear, as shown in Figure 2.  

Not surprisingly, the description of the dynamics of Fermi many-body systems 

has evolved along a very different route than that of bosons. However, there is no 

fundamental reason for this. A very elegant discussion of this problem is given in a 

review article by Pines3. It is argued that the phonon-roton mode of liquid 4He and the 

zero-sound mode of liquid 3He have strong interactions, rather than quantum statistics, 

as common origin. Using a phenomenological approach (pseudo-potentials), Pines and 

co-workers predicted successfully the downturn of the zero-sound mode dispersion in 

liquid 3He at intermediate wave-vectors. Obtaining a unified theory of the excitations of 

Bose and Fermi systems was already considered as the Holy Grail of this field3. In the 

following we provide unambiguous experimental and theoretical evidence supporting 

this point of view, as well as theoretical advances towards this unified description. 

In the present experiment, we have determined the dynamic structure factor of a 

monolayer of liquid 3He, essentially at zero temperature. Two-dimensional Fermi 

liquids have been extensively investigated by thermodynamic techniques17-22; we 

present here the first direct investigation of their elementary excitations by neutron 

scattering.  We observe a collective mode, which not only remains well defined 

throughout the whole PHB, but even re-emerges as a sharp mode at large wave-vectors, 

as shown schematically in Figure 3. 

The He film is made at low temperatures by the controlled adsorption of He gas 

onto a substrate, a high quality ZYX exfoliated graphite (surface area 60 m2) with large 

coherence length (190 nm) and low mosaic spread (10°), essential for obtaining good 



6 

resolution neutron spectra22,23.  The substrate was first pre-plated by a complete 

monolayer of 4He. This high density solid provides a smoother adsorption potential than 

bare graphite. A monolayer of liquid 3He is then deposited onto the 4He pre-plated 

substrate. Its density, determined by adsorption isotherm techniques using a coverage 

scale developed earlier22, is 4.9 atoms/nm2. The corresponding effective mass17-21 is 

m* / m3 ~ 4, similar to that of bulk liquid 3He at a pressure of 2 MPa. An aluminium 

sample cell confines the gas during the adsorption process, performed through a filling 

capillary. Measurements are made in a dilution refrigerator, at temperatures below 

100 mK. 

The experiments have been performed at the Institut Laue-Langevin on the time-

of-flight spectrometer IN6, using an incident wavelength of 0.512 nm. The measured 

dynamic structure factor S(k,E) contains all the relevant information on the elementary 

excitations of a system; it essentially gives the probability for creating such an 

excitation with wave-vector k and energy E. The main features revealed by our data, 

shown in Figure 4, are: 1) the zero-sound mode is seen at low wave-vectors; given the 

limited experimental range, its definite identification requires theoretical support, to be 

presented later. 2) The mode is broadened as it enters the PHB. 3) It emerges beyond the 

limits of the PHB as an intense mode, displaying a minimum as a function of energy; its 

energy increases rapidly beyond this minimum. 4) The high intensity region of S(k,E) 

closely resembles the phonon-maxon-roton dispersion relation of liquid 4He. 5) At low 

wave-vectors, significant intensity is present at high energies above the PHB, indicating 

the existence of multi-pair excitations. As shown below, the latter play an essential role 

in explaining the observed position of the roton and the emergence of the collective 

mode beyond the PHB. 

The results of our theoretical calculation of the dynamic structure factor for the 

density of the experimental system are shown in Figure 5. Adopting the view that the 
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physical mechanisms that determine the short-wavelength spectrum are the same in 4He 

and in 3He, we have developed the fermion generalization of the multi-particle 

fluctuation theory of Jackson, Feenberg, and Campbell7,9, that has been successful for 

bosonic quantum fluids. The theory supersedes the intuitive “backflow” theory of 

Feynman, it allows to avoid the Random Phase Approximation2 (RPA), which is not 

applicable at atomic wave-vectors. 

The boson theory has by now been developed to a level where a consistent 

description of the dynamics of 4He in the whole (k,E) plane is reached. The derivation 

of the equations of motion for the Fermi system proceeds along the same lines9, with 

additional complications due to the multitude of exchange diagrams; input to the 

calculations is the static structure function S(k) obtained from microscopic Fermi-

hypernetted-chain calculations. The main results of the pair-fluctuation theory (Figure 

5) are: 1) At low wave-vectors, the existence of a long-lived zero-sound collective 

mode, close to the PHB upper limit. 2) The mode is broadened, but clearly visible, 

within the PHB. 3) It emerges from the PHB as a well defined, intense excitation. 4) A 

phonon-maxon-roton type of dispersion relation is clearly seen. 5) Multi-pair excitations 

are present at low wave-vectors above the PHB. 6) In addition to an excellent 

description of the spectrum, a good quantitative agreement with the experiment is 

obtained, without adjustable parameters. 

We have observed for the first time the elementary excitations of two-dimensional 

liquid 3He. Using the favourable conditions displayed by this system, we demonstrated 

that a strongly interacting quantum many-body system sustains collective density 

excitations which are largely independent from the quantum statistics: the fermionic 3He 

collective mode is found essentially identical to the phonon-roton curve of the bosonic 
4He.  The current view of Fermi liquids, based on Landau’s theory and RPA long-

wavelength approximations, is therefore misleading when applied at large wave-vectors.  
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Despite the additional particle-hole excitations present in Fermi liquids, the high 

wave-vector dynamics can be dominated by zero-sound (plasmon) coherent excitations. 

This is certainly the case in the strongly correlated two-dimensional system investigated 

here. Consequently, opening the scope of plasmonics, these collective modes could be 

present as high energy excitations in strongly correlated electronic systems, where they 

could induce coherence effects (superconductivity) at relatively high temperatures. The 

consequences of the presence of such collective modes at high wave-vectors and their 

coupling to other collective excitations (phonons, magnons), on the dynamics of 

electronic systems24-28 like high Tc superconductors, heavy fermions, metals, graphene, 

and others, deserve being explored.   
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Figure captions 

 

Figure 1.  Elementary excitations of a model Bose liquid, superfluid 4He. The 

solid line is the dispersion relation predicted by L.D. Landau. Crosses 

correspond to the excitation energy as a function of wave-vector determined by 

neutron scattering (see ref. 10). At low wave-vectors, the dispersion relation is 

linear, and the excitations are quantised sound waves (phonons). At higher 

wave-vectors, the spectrum evolves continuously, displaying a maximum and 

then a characteristic minimum. The corresponding excitations are called 

respectively maxons and rotons; the latter play an essential role in the 

thermodynamic properties of superfluid 4He. Rotons are characteristic of highly 

interacting systems, and can be viewed as the consequence of an incipient 

localisation due to interactions.  

Figure 2.  Elementary excitations of a Fermi liquid. The broad shaded area 

corresponds to the particle-hole band, i.e., to the excitation energy range as a 

function of wave-vector accessible by promoting a particle occupying a state 

inside the Fermi surface, to an empty state outside it. The particle-hole band is 

an essential feature of a Fermi liquid, associated to the existence of a Fermi 

surface. In addition, an interacting Fermi system displays collective density 

modes, called “plasmons” in charged, and “zero-sound” in neutral systems. With 

increasing wave-vectors, the collective modes enter the particle-hole band, 

where they decay (Landau damping) into incoherent particle-hole excitations, as 

depicted by the broad, hatched regions, believed up to now to end the collective 

modes dispersion curves.  
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Figure 3.  Elementary excitations of a neutral Fermi liquid. Depending on the 

strength of the interactions and the system’s dimensionality, the phonon-roton 

collective mode may be Landau damped at high wave-vectors (upper curve), or 

reappear as a well defined collective mode beyond the particle-hole continuum 

(lower curve). In the latter case, collective dynamic effects at high wave-vectors 

are allowed. We demonstrate here that this effect is realized in two-dimensional 
3He.The underlying physics is applicable to any interacting Fermi system (as in 

Figure 2).  

Figure 4.  The dynamic structure factor S(k,E), determined by inelastic neutron 

scattering for a monolayer of liquid 3He of areal density 4.9 atoms/nm2, is shown 

as a function of the neutron momentum transfer k and energy transfer E. The 

colour scale of this contour plot evolves from white to red, with 9 contour lines 

corresponding to intensities 0 to 10 (in arbitrary units proportional to neutron 

counts). White colour is also used for clarity in the lower part of the graph, 

where data cannot be exploited due to the presence of a large quasi-elastic 

background, and in the limits of low and high k determined by the angular range 

covered by the detectors. Solid lines indicate the particle-hole band limits 

calculated for a Fermi gas with the bare 3He atomic mass. High intensity (red 

and orange) regions indicate the existence of modes with wave-vector k and 

energy E, eventually broadened by the experimental resolution (Δk = 1 nm-1, 

ΔE = 0.03 meV). The zero-sound collective mode is visible at low wave-vectors, 

around k ~ 5 nm-1 and E ~ 0.7 meV. It is broadened inside the particle-hole 

band, but it emerges beyond the particle-hole band limits as a well defined 

mode, displaying a minimum as a function of energy at k = 15.5 nm-1 and 

E = 0.4 meV. The collective mode of this Fermi liquid closely resembles the 

phonon-maxon-roton dispersion relation of liquid 4He (see Figure1).  
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Figure 5.  The dynamic structure factor S(k,E), calculated for a monolayer of 

liquid 3He of areal density 4.9 atoms/nm2, is shown as a function of the wave-

vector k and energy E. At this areal density, corresponding to the experimental 

data shown in Figure 4, the Fermi wave-vector is kF = 5.55 nm-1 and the Fermi 

energy EF = 0.213 meV. Solid lines indicate the particle-hole band limits 

calculated for a Fermi gas with the bare 3He atomic mass. High intensity (red 

and orange) regions indicate the existence of modes with wave-vector k and 

energy E. The theoretical spectrum has been slightly broadened to make the 

sharp collective modes visible. The zero-sound collective mode, well defined at 

low wave-vectors, enters the particle-hole continuum, is broadened, and finally 

emerges beyond the lower limit of the particle-hole band, displaying a minimum 

as a function of energy. A phonon-maxon-roton type of dispersion relation is 

clearly seen.  
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Abstract

We develop a systematic theory of multi-particle excitations in strongly interacting Fermi sys-

tems. Our work is the generalization of the time-honored work by Jackson, Feenberg, and Campbell

for bosons, that provides, in its most advanced implementation, quantitative predictions for the

dynamic structure function in the whole experimentally accessible energy/momentum regime. Our

view is that the same physical effects – namely fluctuations of the wave function at an atomic

length scale – are responsible for the correct energetics of the excitations in both Bose and Fermi

fluids. Besides a comprehensive derivation of the fermion version of the theory and discussion of the

approximations made, we present results for homogeneous 3He and electrons in three dimensions.

We find indeed a significant lowering of the zero sound mode in 3He and a broadening of the col-

lective mode due to the coupling to particle-hole excitations in good agreement with experiments.

The most visible effect in electronic systems is the appearance of a “double-plasmon” excitation.

PACS numbers: 67.30.-n, 67.30.em, 71.10.Ca, 71.15.Qe, 71.45.Gm
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I. INTRODUCTION

This paper is concerned with a systematic theory of multi-particle excitations in Fermi

systems. We utilize an equations of motion method that has been used in the past as a

vehicle for many purposes: the derivation of the time–dependent Hartree–Fock (TDHF)

theory [1–3], its analog for strongly interacting systems [4, 5], and for studying single– and

multi–particle correlations in strongly interacting Bose liquids [6, 7].

The simplest way to deal with excitations is to assume that the low–lying excited states

of a quantum fluid can be characterized by the quantum numbers of a single particle. This

is the core idea of Landau’s quasiparticle picture of “normal” quantum fluids [8, 9] as well

as of Feynman’s theory of collective modes in the helium liquids [10]. It is appropriate for

many long wavelengths excitations such as sound waves in Bose fluids or plasmons in an

electron liquid.

Already Feynman realized that this concept is insufficient to describe higher–lying excita-

tions, most prominently the “roton” in 4He. Intuitively appealing, he introduced “backflow”

correlations [11]. These are recognizable as a new type of excitations, depending on two par-

ticles: pair fluctuations. The notion is plausible: For excitations at wavelengths comparable

to the interparticle distance, the time–dependence of a system’s short–ranged structure is

expected to be relevant.

The presently state-of-the-art theory for Bose liquids originates from pioneering studies

by Jackson, Feenberg [6, 12–16], and Campbell and collaborators [17]. Recently, a complete

solution of the pair equation of motion has been accomplished in 4He [7], showing that

the “uniform limit approximation” of Refs. 6, 12–17 is surprisingly good. Consequently,

theoretical improvement must be sought in three-body and higher-order fluctuations [18].

Although quite successful for bosons, there exists to-date no fermion version of the theory.

We therefore develop here the generalization of the equation of motion method for pair

fluctuations to fermions. We calculate the fermionic density–density response function χ(r−

r′; t−t′), relating the induced density fluctuation δρ(r; t) to a weak external perturbation

hext(r; t). In a homogeneous system this is written in momentum space as

δρ(q;ω) = ρ χ(q;ω) h̃ext(q;ω) , (1.1)
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where ρ is the particle number N per volume Ω. We choose Fourier transforms

f(r;ω) ≡
1

N

∑

q

e−iq·r f̃(q;ω) (1.2)

to have the same dimension in q- and in r-space.

The imaginary part of χ(q;ω) is the experimentally accessible dynamic structure factor,

S(q;ω) = −
~

π
ℑm[χ(q;ω)] θ(ω) . (1.3)

The dynamic structure factor satisfies, amongst others, the sum rules

m0 = S(q) =

∫ ∞

0

d~ω S(q;ω), (1.4)

m1 =
~

2q2

2m
=

∫ ∞

0

d~ω ~ω S(q;ω) , (1.5)

where S(q) is the static structure factor.

We develop our theory with the following objectives:

• Technically, the extension of the Jackson–Feenberg–Campbell theory to Fermi systems

amounts to including time–dependent two–particle–two–hole excitations. We require

that the fermionic χ(q;ω) reduces to that of the boson theory in the appropriate limit.

• For bosons, neglecting pair- and higher order fluctuations yields the famous Bijl-

Feynman spectrum [10]

ε(q) =
~

2q2

2mS(q)
≡

t(q)

S(q)
. (1.6)

Its fermionic counterpart is the random–phase approximation (RPA), formulated in

terms of effective interactions [19]. We require that our theory reduces to the RPA if

pair fluctuations are ignored. This implies, in particular, that we obtain in this case a

response function of the form

χ(q;ω) =
χ0(q;ω)

1 − Ṽp h̄(q)χ0(q;ω)
. (1.7)

Here, χ0(q;ω) is the Lindhard function and Ṽp h̄(q) an appropriately defined static

“particle–hole interaction” or “pseudo-potential”.

One of the tasks of microscopic many–body theory is to justify and calculate effective

interactions such as Ṽp h̄(q), as far as this is possible. Using Jastrow–Feenberg correlation
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functions [13] to tame the microscopic hard–core repulsion, it has been shown [5] under

what assumptions a density response function of the RPA form (1.7) can be obtained, and

a microscopic expression for the static effective interaction Ṽp h̄(q) was derived. Under what

conditions a form (1.7) is meaningful at all will be discussed in depth below.

A phenomenological approach to define a particle-hole interaction or “pseudo-potential”

for 3He and electrons was introduced by Aldrich, Iwamoto, and Pines [19, 20]. They deter-

mined the physically intuitive and necessary requirements for Ṽp h̄(q), postulating that the

dynamic response is given by the RPA form (1.7). Reflecting the same physics, the Ṽp h̄(q)

derived from microscopic many-body theory [5] is very similar to the Aldrich-Iwamoto-Pines

pseudopotentials. The microscopic derivation leads to a Ṽp h̄(q) that is uniquely determined

from the static structure function by the two sum rules (1.4)-(1.5). Defining the RPA this

way leads for bosons to the Feynman approximation (1.6) for the spectrum of collective

excitations. From here on, we will use the term “RPA” and “Feynman spectrum” in this

sense.

Our work is organized as follows: Section II introduces the basic quantities and the most

important tools of variational and correlated basis function (CBF) theory. For details, the

reader is referred to review articles [21] and pedagogical material [22]; a brief outline of our

notations and definitions is given in appendix A. Section III is the core of our work; it

provides the derivation of the equations of motion, including pair fluctuations. We show

that the theory can be mapped onto a set of TDHF equations [3] with energy-dependent,

effective interactions. Thus, our work provides the logical generalization of Ref. 5, where

single-particle fluctuations led to a TDHF theory with static effective interactions.

Section IV focuses on the practical implementation of our theory. We formulate, among

others, the “convolution approximation” for fermions. In Section V we derive the density-

density response function χ(q;ω) and discuss its features.

Modern techniques of many-body theory are robust against the details of the interparti-

cle interaction. We can therefore use the methods developed here to examine the dynamics

of two very different systems: The very strongly interacting 3He whose interaction is char-

acterized by a repulsive hard core and a short-ranged attraction, and electrons with their

rather tame but long-ranged Coulomb interaction. Section VI implements our method for

bulk 3He and the electron liquid. In 3He, we compare with neutron scattering experiments

carried out at the Institut Laue Langevin (ILL) in the group led by R. Scherm [23–25]. The
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energetics of the collective mode as well as the width of the spectrum at high momentum

transfers are significantly improved compared to RPA predictions. In the homogeneous elec-

tron liquid the pair-excitation theory predicts plasmon damping as well as double-plasmon

excitations. Experimental verification of the double-plasmon excitation in recent inelastic

X-ray scattering measurements [26, 27] has added new interest in studying the dynamics of

electrons.

Our results are summarized in Sec. VII where we also discuss the directions of future

work.

Appendices A–E give further details on the derivations, and Appendix F a very brief

summary of the minimal implementation of our theory.

II. THEORY FOR STRONGLY INTERACTING FERMIONS

A. Variational theory

Microscopic many-body theory starts with a phenomenological Hamiltonian for N inter-

acting fermions,

H = −
∑

i

~
2

2m
∇2

i +
∑

i<j

v (|ri−rj|) . (2.1)

For strong interactions, CBF theory [13] has proved to be an efficient and accurate method

for obtaining ground state properties. It starts with a variational wave function of the form

|Ψo〉 =
F |Φo〉

〈Φo|F †F |Φo〉1/2
, (2.2)

where Φo(1, . . . , i, . . . , N) is a model state, normally a Slater–determinant, and “i” is short

for both spatial and ν discrete (spin and/or isospin) degrees of freedom. The correlation

operator F (1, . . . , N) is suitably chosen to describe the important features of the interacting

system. Most practical and highly successful is the Jastrow–Feenberg [13] form

F (1, . . . , N) = exp

{
1

2

[
∑

1≤i<j≤N

u2(ri, rj) +
∑

1≤i<j<k≤N

u3(ri, rj, rk) + . . .

]}
. (2.3)

The un(r1, . . . , rn) are made unique by requiring them to vanish for |ri−rj | →∞ (“cluster

property”).

From the wave function (2.2), (2.3), the energy expectation value

Ho,o ≡ 〈Ψo|H |Ψo〉 (2.4)
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can be calculated either by simulation or by integral equation methods. The hierarchy

of Fermi-Hypernetted-Chain (FHNC) approximations is compatible with the optimization

problem, i.e. with determining the optimal correlation functions un(r1, . . . , rn) through

functionally minimizing the energy

δHo,o

δun(r1, . . . , rn)
= 0 . (2.5)

Due to the multitude of exchange diagrams, the Fermi-HNC (FHNC) and corresponding

Euler equations can be quite complicated [28]; the simplest approximation of the Euler

equations (2.5) that contains the important physics is spelled out in App. A1.

The optimization of the correlations also facilitates making connections with other types

of many-body theories, such as Feynman-diagram based expansions and summations [29].

B. Correlated Basis Functions

Although quite successful in predicting ground state properties of strongly interacting

systems, the Jastrow-Feenberg form (2.3) of the correlation operator F has some deficiencies.

The most obvious problem is that the nodes of the wave function (2.2) are identical to those

of the model state |Φo〉. To improve upon the description of physics, CBF theory [21, 22, 28]

uses the correlation operator F to generate a complete set of correlated and normalized N -

particle basis states through

|Ψm〉 =
F |Φm〉

〈Φm|F †F |Φm〉1/2
, (2.6)

where the {|Φm〉} form a complete basis of model states. Although the |Ψm〉 are not orthog-

onal, perturbation theory can be formulated in terms of these states [13, 30]. We review here

this method only very briefly, details may be found in Refs. 21 and 22; the diagrammatic

construction of the relevant ingredients is given in Ref. 31.

For economy of notation, we introduce a “second–quantized” formulation of the corre-

lated states. The Jastrow–Feenberg correlation operator in (2.3) explicitly depends on the

particle number, i.e. F = FN(1, . . . , N) (whenever unambiguous, we omit the corresponding

subscript). Starting from the conventional a†k, ak, creation and annihilation operators α†
k, αk

of correlated states are defined by their action on the basis states:

|α†
k Ψm〉 ≡ F

N+1
a†k |Φm〉

/
〈Φm|akF

†
N+1

F
N+1

a†k|Φm〉1/2 , (2.7)
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|αk Ψm〉 ≡ F
N−1

ak |Φm〉
/
〈Φm|a†kF

†
N−1

F
N−1

ak|Φm〉1/2 . (2.8)

According to these definitions, α†
k and αk obey the same (anti–) commutation rules as their

uncorrelated cousins, but they are not Hermitian conjugates. If |Ψm〉 is an N–particle state,

then the state in Eq. (2.7) must carry an (N+1)-particle correlation operator, while that in

Eq. (2.8) must be formed with an (N−1)–particle correlation operator.

In general, we label “hole” states, which are occupied in |Φo〉, by h, h′, hi , . . . , and

unoccupied “particle” states by p, p′, pi , etc. To display the particle-hole pairs explicitly,

we will use alternatively to |Ψm〉 the notation |Ψp1...pd h1...hd
〉. A basis state with d particle-

hole pairs is then

|Ψp1...pd h1...hd
〉 = α†

p1
· · ·α†

pd
αhd

· · ·αh1
|Ψo〉 . (2.9)

The execution of the theory needs the matrix elements of the Hamiltonian, the unit

operator, and the density operator. Key quantities are diagonal and off-diagonal matrix

elements of unity and H ′≡ H−Ho,o

Mm,n = 〈Ψm|Ψn〉 ≡ δm,n +Nm,n , (2.10)

H ′
m,n ≡ Wm,n +

1

2
(Hm,m +Hn,n − 2Ho,o)Nm,n . (2.11)

Eq. (2.11) defines a natural decomposition [31, 32] of the matrix elements of H ′
m,n.

The ratios of normalization integrals, Im,m ≡ 〈Φm|F †F |Φm〉, define the factors

zp1...pd h1...hd
≡ zm ≡

√
Im,m/Io,o . (2.12)

For large particle numbers and d≪N these factorize as

zm =
zp1 . . . zpd

zh1 . . . zhd

+ O(N−1) . (2.13)

Likewise, to leading order in the particle number, the diagonal matrix elements of H ′≡

H−Ho,o become additive, so that for the above d-pair state we can define the CBF single

particle energies

〈Ψm|H ′|Ψm〉 ≡
d∑

i=1

epihi
+ O(N−1) , (2.14)

with eph = ep − eh.

For the off–diagonal elements Om,n of an operator O (specifically the Hamiltonian, the

unit-, density- and current-operator) we sort the quantum numbers mi and ni such that
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|Ψm〉 is mapped onto |Ψn〉 by

|Ψm〉 = α†
m1
α†

m2
· · ·α†

md
αnd

· · ·αn2
αn1

|Ψn〉 . (2.15)

From this we recognize that, to leading order in N , any Om,n depends only on the difference

between the states |Ψm〉 and |Ψn〉 and not on the states as a whole. Consequently, Om,n

can be written as matrix element of a d-body operator

Om,n ≡ 〈m1m2 . . .md |O(1, 2, . . . d) |n1 n2 . . . nd〉a . (2.16)

(The index a indicates antisymmetrization.) According to (2.16), Wm,n and Nm,n define

d−particle operators N and W, e.g.

Nm,o ≡ Np1p2...pd h1h2...hd,0 ≡ 〈p1p2 . . . pd | N (1, 2, . . . , d) | h1h2 . . . hd〉a ,

Wm,o ≡ Wp1p2...pd h1h2...hd,0 ≡ 〈p1p2 . . . pd |W(1, 2, . . . , d) | h1h2 . . . hd〉a . (2.17)

Diagrammatic representations of N (1, 2, . . . , d) and W(1, 2, . . . , d) have the same topology

[31]. In homogeneous systems, the continuous parts of the pi, hi are wave numbers pi,hi;

we abbreviate their difference as qi. The highest occupied momentum is ~kF.

An important consideration is, for our purposes, the connection between CBF matrix

elements, the static structure function, and the optimization conditions for the ground state.

The static structure function S(q) = 1
N
〈Ψo|ρ̂qρ̂−q|Ψo〉 is routinely obtained in ground state

calculations; for some systems it is also available from experiments. We can also write S(q)

as the weighted average of the matrix elements (2.17),

S(q) = SF(q) +
1

N

∑

hh′

zpp′hh′Npp′hh′,0 . (2.18)

where SF(q) is the static structure function of non-interacting fermions.

Similarly, the optimization conditions (2.5) for the pair correlation function can, in mo-

mentum space, be written in terms of off-diagonal matrix elements of the Hamiltonian:

0 =
δE

δũ2(q,q′)
=

〈Φo|F †H ′F [ρ̂qρ̂q′ − ρ̂q+q′ ] |Φo〉

〈Φo|F †F |Φo〉

=
∑

hh′

〈Φo|F †H ′F
∣∣∣a†p′a†pahah′Φo

〉

〈Φo|F †F |Φo〉
=

∑

hh′

zpp′hh′H ′
pp′hh′,0 (2.19)

i.e. the weighted average of the off-diagonal matrix elements H ′
0,pp′hh′ vanishes for optimized

pair correlations. Both features will provide rules for systematic and consistent approxima-

tion schemes for the operators N (1, 2, . . . , d) and W(1, 2, . . . , d).
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III. EQUATIONS OF MOTION

A. Excitation operator and action principle

To formulate a theory of excited states for strongly interacting fermions we generalize

the ansatz (2.2) in analogy to the pair fluctuations theory for strongly interacting bosons

[6, 7, 12, 14–17]. We restrict ourselves here to uniform systems. The system is subjected to

a small external perturbation

Hext(t) ≡

∫
d3r hext(r; t) ρ̂(r) (3.1)

where ρ̂(r) is the density operator. The correlated wave function for the perturbed state is

chosen to be

∣∣∣Ψ(t)
〉

= exp[−iHo,ot/~]
∣∣∣Ψ0(t)

〉
,

∣∣∣Ψ0(t)
〉

=
1

I1/2(t)
exp

[
1
2
U(t)

] ∣∣∣Ψo

〉
(3.2)

I(t) =
〈
Ψo

∣∣∣ exp
[

1
2
U †(t)

]
exp

[
1
2
U(t)

] ∣∣∣ Ψo

〉
,

with the excitation operator

U(t) ≡
∑

ph

δu
(1)
ph (t) α†

pαh +
1

2

∑

pp′hh′

δu
(2)
pp′hh′(t) α

†
pα

†
p′αh′αh

≡ U1(t) + U2(t) . (3.3)

The particle–hole amplitudes δu
(1)
ph (t) and δu

(2)
pp′hh′(t) are determined by the stationarity prin-

ciple for the action

S
[
δu

(1)
ph (t), δu

(1)∗
ph (t), δu

(2)
pp′hh′(t), δu

(2)∗
pp′hh′(t)

]
=

∫
dt L(t) , (3.4)

with the Lagrangian [1, 2, 4, 5]

L(t) =
〈
Ψ(t)

∣∣∣ H +Hext(t) − i ~
∂

∂t

∣∣∣Ψ(t)
〉

=
〈
Ψ0(t)

∣∣∣ H ′ +Hext(t) − i ~
∂

∂t

∣∣∣Ψ0(t)
〉
. (3.5)

A “boson” version of the theory is recovered when the particle-hole amplitudes δu
(1)
ph (t) and

δu
(2)
pp′hh′(t) are restricted to local functions that depend only on the momentum transfers

q(′) = p(′) − h(′).
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B. Brillouin conditions

To derive linear equations of motion, the Lagrangian (3.5) must be expanded to second

order in the excitation operator U(t). For the procedure to be meaningful, one should require

that the first order terms vanish. This is, in principle, a necessary condition, however, in

practice it is not always possible to satisfy it rigorously.

The first variation of the energy with respect to δu
(1)
ph (t) and δu

(1)∗
ph (t) is

δ 〈Ψ(t)|H ′ |Ψ(t)〉

δ(δu
(1)
ph (t))

∣∣∣∣∣
δu(1)(t)=δu(2)(t)=0

= H ′
0,ph (3.6)

and its complex conjugate. This term vanishes in the homogeneous liquid due to momentum

conservation.

The variation with respect to δu
(2)
pp′hh′ leads to a similar condition

δ 〈Ψ(t)|H ′ |Ψ(t)〉

δ(δu
(2)
pp′hh′(t))

∣∣∣∣∣
δu(1)(t)=δu(2)(t)=0

= H ′
0,pp′hh′ = 0 (3.7)

and its complex conjugate. This condition is not rigorously satisfied by a Jastrow-Feenberg

ground state. Recall, however, that the optimization condition (2.5) for pair correlations

can be written in terms of off-diagonal matrix elements of H ′ in the form (2.19). If the

correlation operator F is chosen optimally, i.e. satisfying Eq. (2.5) for all n, the weighted

averages of Ho,n vanish. This shows precisely what an optimized ground state does: The

Jastrow correlation function does not have enough flexibility to guarantee the Brillouin

condition (3.7), because H ′
0,pp′hh′ depends non–trivially on four momenta, whereas the two–

body Jastrow–Feenberg function depends only on the momentum transfer. Optimization

has the effect that the Brillouin conditions are satisfied in the Fermi-sea average.

To make progress we must assume that in the Lagrangian terms that are linear in the

pair fluctuations are sufficiently small and can be omitted. Likewise, we also shall assume

that the ground state wave function (2.3) is well enough optimized such that three- and

four-body Brillouin conditions are satisfied. In momentum space, these are

〈Ψ0|H
′ρq1 , · · · , ρqn

|Ψ0〉 = 0 . (3.8)
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C. Transition density

The quantity of primary interest is the linear density fluctuation induced by the external

field Hext(t). We regard this density as a complex quantity; it is understood that the physical

density fluctuation is its real part. Assuming the excitation operator (3.3), it is

δρ(r; t) =
∑

ph

〈
Ψo

∣∣∣ ρ̂(r) − ρ
∣∣∣Ψph

〉
δu

(1)
ph (t)

+
1

2

∑

pp′hh′

〈
Ψo

∣∣∣ ρ̂(r) − ρ
∣∣∣Ψpp′h′h

〉
δu

(2)
pp′hh′(t)

≡
∑

ph

ρ0,ph(r) δu
(1)
ph (t) +

1

2

∑

pp′hh′

ρ0,pp′hh′(r) δu
(2)
pp′hh′(t) . (3.9)

The matrix elements of the density, ρ0,ph(r) and ρ0,pp′hh′(r) with respect to the correlated

states can also be written as linear combinations of the matrix elements ρF
0,ph(r) with respect

to uncorrelated states, and one-, two-, and three-body matrix elements of the unit operator.

For the sake of discussion, let us briefly neglect the pair amplitudes. Since the density

operator is local, we can commute ρ̂(r) to the right or to the left of the correlation operator

F . The form obtained by commuting ρ̂(r) to the left is

ρ0,ph(r) =
∑

p′h′

ρ̃F
0,p′h′(r)Mp′h′,ph = ρF

0,ph(r) +
∑

p′h′

ρ̃F
0,p′h′(r)Np′h′,ph , (3.10)

where ρ̃F
0,ph(r) ≡ zph 〈Φo| ρ̂(r)−ρ |a†pahΦo〉 ≡ zph 〈h|δρ̂(r)|p〉 are, apart from the normalization

factors zph, the matrix elements of the density operator in a non-interacting system.

The second form is obtained by commuting ρ̂(r) to the right of F :

ρ0,ph(r) =
1

z2
ph

ρ̃F
0,ph(r) +

∑

p′h′

N0,pp′hh′ ρ̃F
p′h′,0(r) . (3.11)

These two seemingly different expressions are identical, the different analytic forms appear

only because the second quantized formulation hides the fact that the density operator is

local. We will see below that both forms are useful.

Including pair fluctuations, the fluctuating density (3.9) can generally be written as

δρ(r; t) =
∑

ph

ρ̃F
0,ph(r)

[
∑

p′h′

Mph,p′h′δu
(1)
p′h′(t) +

1

2

∑

p′p′′h′h′′

Mph,p′p′′h′h′′δu
(2)
p′p′′h′h′′(t)

]
.(3.12)

A key step that simplifies the structure of the equations of motion significantly is to

introduce a new one-body function. In analogy to the boson theory [7], we define new
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particle-hole amplitudes δv
(1)
ph (t) through

δρ(r; t) ≡
∑

ph

ρ0,ph(r) δv
(1)
ph (t) (3.13)

such that

δρ(r; t) =
∑

php′h′

ρ̃F
0,ph(r)Mph,p′h′ δv

(1)
p′h′(t) . (3.14)

This implies

∑

p′h′

Mph,p′h′ δv
(1)
p′h′(t) =

∑

p′h′

Mph,p′h′ δu
(1)
p′h′(t) +

1

2

∑

p′p′′h′h′′

Mph,p′p′′h′h′′ δu
(2)
p′p′′h′h′′(t) . (3.15)

Defining M
(I)
ph,p′p′′h′h′′ via

Mph,p′p′′h′h′′ ≡
∑

p1h1

Mph,p1h1
M

(I)
p1h1,p′p′′h′h′′ (3.16)

we can formally solve for δv
(1)
ph (t):

δv
(1)
ph (t) = δu

(1)
ph (t) +

1

2

∑

p′p′′h′h′′

M
(I)
ph,p′p′′h′h′′ δu

(2)
p′p′′h′h′′(t) . (3.17)

For this operation, the inverse of Mph,p′h′ seems to be needed. As its calculation is not

immediately obvious, we hasten to note that M
(I)
ph,p′p′′h′h′′ is, in terms of Jastrow-Feenberg

diagrams [31], a proper subset of the diagrams contributing to Mph,p′p′′h′h′′. We will dis-

cuss the diagrammatic analysis of ρ0,ph(r) in App. B 1. The diagrammatic construction of

M
(I)
ph,p′p′′h′h′′ in the spirit of Eq. (3.16) is carried out in App. B 2.

D. The Lagrangian

We split the Lagrangian (3.5) as L(t) = Lext(t) + Lt(t) + Lint(t), with

Lext(t) =
〈
Ψ0(t)

∣∣∣ Hext

∣∣∣ Ψ0(t)
〉
, (3.18)

Lt(t) =
〈
Ψ0(t)

∣∣∣ − i ~
∂

∂t

∣∣∣Ψ0(t)
〉
, (3.19)

Lint(t) =
〈
Ψ0(t)

∣∣∣ H ′
∣∣∣ Ψ0(t)

〉
. (3.20)

Lext(t) is obtained directly from the transition density:

Lext(t) =

∫
d3r hext(r; t) δρ(r; t)
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=

∫
d3r hext(r; t)ℜe

[
∑

ph

ρ0,ph(r) δu
(1)
ph (t) +

1

2

∑

pp′hh′

ρ0,pp′hh′(r) δu
(2)
pp′hh′(t)

]

= ℜe
∑

ph

∫
d3r hext(r; t) ρ0,ph(r) δv

(1)
ph (t) . (3.21)

The time-derivative term Lt(t) is, to second order in the fluctuations,

Lt(t) =
~

2〈Ψ0(t)|Ψ0(t)〉
ℑm

∑[
δu̇

(1)
ph (t) 〈ψ(t)|α†

pαhψ(t)〉 (3.22)

+
1

2

∑
δu̇

(2)
pp′hh′(t) 〈Ψ0(t)|α

†
pα

†
p′αh′αhΨ0(t)〉

]

=
~

4
ℑm

[∑
δu

(1)∗
ph (t)Mph,p′h′δu̇

(1)
p′h′(t) +

1

2

∑
δu

(1)∗
ph (t)Mph,p′p′′h′h′′δu̇

(2)
p′p′′h′h′′(t)

+
1

2

∑
δu

(2)∗
pp′hh′(t)Mpp′hh′,p′′h′′δu̇

(1)
p′′h′′(t) +

1

4

∑
δu

(2)∗
pp′hh′(t)Mpp′hh′,p′′p′′′h′′h′′′δu̇

(2)
p′′p′′′h′′h′′′(t)

]
.

Introducing the new amplitudes δv
(1)
ph (t) defined in Eq. (3.13) eliminates the terms that

couple the one- and the two-body amplitudes:

Lt(t) =
~

4
ℑm

[∑
δv

(1)∗
ph (t)Mph,p′h′δv̇

(1)
p′h′(t)+

1

4

∑
δu

(2)∗
pp′hh′(t)M

(I)
pp′hh′,p′′p′′′h′′h′′′δu̇

(2)

p′′p′′′h′′h′′′ (t)

]
,

(3.23)

where

M
(I)
pp′hh′,p′′p′′′h′′h′′′ = Mpp′hh′,p′′p′′′h′′h′′′ −

∑

p1p2h1h2

M
(I)
pp′hh′,p1h1

Mp1h1,p2h2
M

(I)
p2h2,p′′p′′′h′′h′′′ . (3.24)

The second term in Eq. (3.24) cancels, in a diagrammatic expansion, some terms from the

first one (cf . App. B 1). From Eqs. (3.21) and (3.23), the advantage of introducing the new

particle-hole amplitudes δv
(1)
ph (t) becomes obvious.

The contributions to the interaction term are classified according to the involved n−body

fluctuations Un as defined in (3.3),

Lint(t) = L(11)
int (t) + L(12)

int (t) + L(22)
int (t) , (3.25)

with

L(11)
int (t) =

1

8
〈Ψo|

[
U †

1(t)U
†
1(t)H

′ + 2U †
1(t)H

′U1(t) +H ′U1(t)U1(t)
]
|Ψo〉 ,

L(12)
int (t) =

1

4
〈Ψo|

[
U †

1(t)U
†
2(t)H

′ + U †
1 (t)H ′U2(t) + U †

2 (t)H ′U1(t) +H ′U1(t)U2(t)
]
|Ψo〉 ,

L(22)
int (t) =

1

8
〈Ψo|

[
U †

2(t)U
†
2(t)H

′ + 2U †
2(t)H

′U2(t) +H ′U2(t)U2(t)
]
|Ψo〉 . (3.26)
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If the Brillouin conditions (3.6)–(3.7) as well as their generalizations to higher order

fluctuations were satisfied exactly, all contributions to L(ij)
int (t) containing U †

i (t)U
†
j (t) and

Ui(t)Uj(t) would be zero. For fermions with optimized Jastrow–Feenberg wave functions it

is only true in the averaged sense (2.19). These terms are nevertheless expected to be small

in L(22)
int (t) since neglecting these terms is equivalent to negligible four-body correlations.

Such a simplifying assumption is not necessary in L(12)
int (t) and L(11)

int (t) although we will see

that the terms containing U1(t)U2(t) and U †
1(t)U

†
2(t) in L(12)

int (t) are indeed negligible. We

keep these terms for the time being since it will turn out that their omission will suggest,

for consistency reasons, further simplifications.

The next step is to express the interaction term (3.26) in terms of the CBF matrix

elements introduced on section IIB. In the following it is understood that we sum over all

quantum numbers when no summation subscripts are spelled out.

L(11)
int (t) =

1

8

∑
δu

(1)∗
ph (t)δu

(1)∗
p′h′ (t)H

′
pp′hh′,0 + c.c. +

1

4

∑
δu

(1)∗
ph (t)H ′

ph,p′h′δu
(1)
p′h′(t) ,(3.27)

L(12)
int (t) =

1

8

∑
δu

(1)∗
ph (t)δu

(2)∗
p′p′′h′h′′(t)H

′
pp′p′′hh′h′′,0 + c.c.

+
1

8

∑
δu

(1)∗
ph (t)H ′

ph,p′p′′h′h′′δu
(2)
p′p′′h′h′′(t) + c.c. , (3.28)

L(22)
int (t) =

1

32

∑
δu

(2)∗
pp′hh′(t)δu

(2)∗
p′′p′′′h′′h′′′(t)H

′
pp′p′′p′′′hh′h′′h′′′,0 + c.c.

+
1

16

∑
δu

(2)∗
pp′hh′(t)H

′
pp′hh′,p′′p′′′h′′h′′′δu

(2)
p′′p′′′h′′h′′′(t) . (3.29)

Substituting δv
(1)
ph (t) for δu

(1)
ph (t) leads to new coefficient functions in the interaction part of

the Lagrangian:

Lint(t) = L
′(11)
int (t) + L

′(12)
int (t) + L

′(22)
int (t) (3.30)

with

L
′(11)
int (t) =

1

8

∑
δv

(1)∗
ph (t) δv

(1)∗
p′h′ (t)H

′
pp′hh′,0 + c.c. +

1

4

∑
δv

(1)∗
ph (t)H ′

ph, p′h′ δv
(1)
p′h′(t) ,(3.31)

L
′(12)
int (t) =

1

8

∑
δv

(1)∗
ph (t) δu

(2)∗
p′p′′h′h′′(t)K

(ph)
p′p′′h′h′′,0 + c.c.

+
1

8

∑
δv

(1)∗
ph (t)Kph,p′p′′h′h′′δu

(2)
p′p′′h′h′′(t) + c.c. (3.32)

L
′(22)
int (t) =

1

32

∑
δu

(2)∗
pp′hh′(t) δu

(2)∗
p′′p′′′h′′h′′′(t)K

(pp′hh′)
p′′p′′′h′′h′′′,0 + c.c.

+
1

16

∑
δu

(2)∗
pp′hh′(t)Kpp′hh′, p′′p′′′h′′h′′′ δu

(2)
p′′p′′′h′′h′′′(t) . (3.33)
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The new coefficients Km,n are

Kph, p′p′′h′h′′ ≡ H ′
ph, p′p′′h′h′′ −

∑

p1h1

H ′
ph, p1h1

M
(I)
p1h1, p′p′′h′h′′ , (3.34)

K
(ph)
p′p′′h′h′′,0 ≡ H ′

pp′p′′hh′h′′,0 −
∑

p1h1

H ′
ph p1h1,0M

(I)
p′p′′h′h′′, p1h1

, (3.35)

Kpp′hh′, p′′p′′′h′′h′′′ ≡ H ′
pp′hh′, p′′p′′′h′′h′′′

−
∑

p1h1

(
M

(I)
pp′hh′, p1h1

H ′
p1h1, p′′p′′′h′′h′′′ +H ′

pp′hh′, p1h1
M

(I)
p1h1, p′′p′′′h′′h′′′

)

+
∑

p1h1p2h2

M
(I)
pp′hh′, p1h1

H ′
p1h1, p2h2

M
(I)
p2h2, p′′p′′′h′′h′′′ , (3.36)

and an analogous term for K
(pp′hh′)
p′′p′′′h′′h′′′,0 .

E. Equations of motion

With the sole approximation to neglect the terms proportional to U2(t)U2(t) and

U †
2(t)U

†
2(t), the Euler equations become

∑[
i~Mph,p′h′

∂

∂t
−H ′

ph,p′h′

]
δv

(1)
p′h′(t) −

∑
H ′

pp′hh′,0 δv
(1)∗
p′h′ (t) (3.37)

−
1

2

∑[
Kph,p′p′′h′h′′ δu

(2)
p′p′′h′h′′(t) + K

(ph)
p′p′′h′h′′,0 δu

(2)∗
p′p′′h′h′′(t)

]
= 2

∫
d3r ρph,0(r) hext(r; t) ,

1

2

∑[
i~M

(I)
pp′hh′,p′′p′′′h′′h′′′

∂

∂t
−Kpp′hh′,p′′p′′′h′′h′′′

]
δu

(2)
p′′p′′′h′′h′′′(t)

−
∑[

Kpp′hh′,p′′h′′ δv
(1)
p′′h′′(t) +K

(p′′h′′)
pp′hh′,0 δv

(1)∗
p′′h′′(t)

]
= 0 . (3.38)

The time dependence of the external field can be assumed to be harmonic, with an infinite-

simal turn-on component that determines the sign of the imaginary part

hext(r; t) = hext(r;ω)
[
eiωt + e−iωt

]
eηt/~ . (3.39)

This imposes the time dependence

δv
(1)
ph (t) = δv

(1+)
ph (ω) e−i(ω+iη/~)t +

[
δv

(1−)
ph (ω) e−i(ω+iη/~)t

]∗
, (3.40)

δu
(2)
pp′hh′(t) = δu

(2+)
pp′hh′(ω) e−i(ω+iη/~)t +

[
δu

(2−)
pp′hh′(ω) e−i(ω+iη/~)t

]∗
.

Defining

Epp′hh′,p′′p′′′h′′h′′′(ω) ≡ (~ω+iη)M
(I)
pp′hh′,p′′p′′′h′′h′′′ −Kpp′hh′,p′′p′′′h′′h′′′ (3.41)
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the equations of motion for the pair fluctuations are

1

2

∑
Epp′hh′,p′′p′′′h′′h′′′( ω) δu

(2+)
p′′p′′′h′′h′′′(ω) =

∑[
Kpp′hh′,p′′h′′ δv

(1+)
p′′h′′(ω) +K

(p′′h′′)
pp′hh′,0 δv

(1−)
p′′h′′(ω)

]
,

1

2

∑
E∗

pp′hh′,p′′p′′′h′′h′′′(−ω) δu
(2−)
p′′p′′′h′′h′′′(ω) =

∑[
K∗

pp′hh′,p′′h′′ δv
(1−)
p′′h′′(ω) +K

(p′′h′′)∗
pp′hh′,0 δv

(1+)
p′′h′′(ω)

]
.

(3.42)

All pair quantities are symmetric under the interchange of the involved pair variables,

e.g. (pp′, hh′) ↔ (p′p, h′h). We can utilize this feature to replace the fully symmetric

Epp′hh′,p′′p′′′h′′h′′′(ω) by an asymmetric form, e.g. (C1) which removes the factor 1/2 in Eq.

(3.42).

The pair equations (3.42) are now solved for the δu
(2±)
pp′hh′(ω) and the solutions are inserted

into the one-body equation. The latter retains the structure of a TDHF equation, but

with the matrix elements of H ′ supplemented by frequency-dependent terms. We adapt the

definition of Wm,n in (2.11) by adding these corrections:

Wph, p′h′(ω) = Wph, p′h′ +
∑

Kph, p1p2h1h2 E
−1
p1p2h1h2,p′1p′2h′

1h′

2
(ω)Kp′1p′2h′

1h′

2, p′h′

+
∑

K
(ph)
p1p2h1h2,0E

∗−1
p1p2h1h2,p′1p′2h′

1h′

2
(−ω)K

(p′h′)∗
p′1p′2h′

1h′

2,0 , (3.43)

Wpp′hh′, 0(ω) = Wpp′hh′, 0 +
∑

Kph, p1p2h1h2 E
−1
p1p2h1h2,p′1p′2h′

1h′

2
(ω)K

(p′h′)
p′1p′2h′

1h′

2,0

+
∑

K
(ph)
p1p2h1h2,0E

∗−1
p1p2h1h2,p′1p′2h′

1h′

2
(−ω)K∗

p′1p′2h′

1h′

2, p′h′ . (3.44)

This TDHF form results also if the terms containing U2(t)U2(t) are retained, but the ex-

pressions for the dynamic parts of the W -matrices become lengthier.

The equations of motion for the particle-hole amplitudes are then

2

∫
d3r hext(r;ω) ρ0,ph(r) =

∑

p′h′

[
(~ω+iη)Mph,p′h′ − δp,p′δh,h′ eph

]
v

(1+)
p′h′ (ω)

−
∑

p′h′

[
Wph, p′h′(ω) +

1

2
(eph + ep′h′)Nph, p′h′

]
δv

(1+)
p′h′ (ω)

−
∑

p′h′

[
Wpp′hh′,0(ω) +

1

2
(eph + ep′h′)Npp′hh′,0

]
δv

(1−)
p′h′ (ω) . (3.45)

F. Supermatrix representation

We can now carry out exactly the same manipulations as in previous work [5] and re-

duce these equations (3.45) to the form of TDHF equations with energy-dependent effective

interactions.
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Equations (3.10) and (3.11) express the density in terms of CBF matrix elements in two

different forms. For the present purpose, it is convenient to use these two representations

symmetrically,

δρ0,ph(r) =
1

2

[
1 +

1

z2
ph

]
ρ̃F

0,ph(r) +
1

2

∑

p′h′

[
ρ̃F

0,p′h′Np′h′,ph + ρ̃F ∗
0,p′h′(r)N0,pp′hh′

]
. (3.46)

Using Eqs. (3.13) and (3.40), the density fluctuations can then be written as

δρ(r;ω) =
1

2

∑

ph

[
ρ0,ph(r) δv

(1+)
ph (ω) + ρ∗0,ph(r) δv

(1−)
ph (ω)

]

≡
1

2

∑

ph

[
ρ̃F

0,ph(r) δc
(1+)
ph (ω) + ρ̃F∗

0,ph(r) δc
(1−)
ph (ω)

]
, (3.47)

(cf. (3.10) for the definition of ρ̃F
0,ph(r)). This defines new amplitudes δc

(1±)
ph (ω). These

relate, apart from the normalization factors, the observed density to the matrix elements of

the density operator in the non-interacting system. The equations of motion can now be

simplified by introducing a “supermatrix” notation. Particle-hole matrix elements together

with their complex conjugate are combined into vectors, e.g.

ρ̃
F ≡


 ρ̃F

0,ph

ρ̃F∗
0,ph


 ; δc ≡


 δc

(1+)
ph

δc
(1−)
ph


 (3.48)

(and analogously for δv
(1±)
ph ). Equation (3.47) then simply reads

δρ(r;ω) = 1
2
δc(ω) · ρ̃F(r) . (3.49)

The matrices

N =


 Nph,p′h′ Npp′hh′,0

N0,pp′hh′ Np′h′,ph


 (3.50)

and

C =
1

2




1 +
1

z2
ph

0

0 1 +
1

z2
ph


 δp,p′δh,h′ +

1

2
N (3.51)

relate the amplitude functions:

δc = C · δv . (3.52)

In the driving term on the l.h.s. of (3.45) we use ρ0,ph = (C·ρ̃F)0,ph to obtain

2

∫
d3r hext(r;ω) ρ0,ph(r) = 2C · hext , (3.53)
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where the vector hext is built with the non-interacting states (cf . ρ̃F
0,ph in (3.10))

h̃F
0,ph(ω) = zph 〈h|hext(r;ω) |p〉 . (3.54)

Defining the ω−dependent matrices

Ω =


 (~ω+iη − eph)δp,p′δh,h′ 0

0 −(~ω+iη + eph)δp,p′δh,h′


 ,

W =


 W

(+)
ph,p′h′(ω) W

(−)
pp′hh′,0(ω)

W
(+)
0,pp′hh′(ω) W

(−)
p′h′,ph(ω)


 , (3.55)

the equations of motion assume supermatrix form [5]
[
Ω +

1

2
ΩN +

1

2
NΩ − W(ω)

]
· δv = 2C · hext . (3.56)

We now formally define a new, energy–dependent interaction matrix Vp−h(ω) by
[
Ω +

1

2
ΩN +

1

2
NΩ− W

]
≡ C ·

[
Ω − Vp−h(ω)

]
·C . (3.57)

Thus the response equations take the simple TDHF form

[
Ω − Vp−h(ω)

]
· δc = 2hext . (3.58)

With this, we have reformulated the theory for a strongly interacting system in the TDHF

form (3.58) but with an energy dependent effective interaction. Our derivation has led to

a clear definition of this effective particle-hole interaction and to a prescription on how to

calculate this from the underlying bare Hamiltonian.

The formal derivation appears to involve the calculation of the inverse of a huge matrix.

The key point, however, is that the manipulation (3.57) can be carried out diagrammatically.

Then it becomes obvious that many terms occurring in the combination of matrices in (3.56)

are not part of Vp−h(ω). Specifically, these are the chain diagrams in the direct channel [5].

IV. DIAGRAMMATIC ANALYSIS AND LOCAL INTERACTIONS

A. General strategy

Generally, the non-local operators N (1, 2) and W(1, 2) in (2.17) consists of up to 4-point

functions. Cluster expansions and resummations have been carried out in Ref. 31 and led to
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reasonably compact representations in terms of the compound-diagrammmatic quantities of

the FHNC summation method. Nevertheless, due to their non-locality, it is difficult to deal

with these quantities exactly. The simplest approximation for the operator is to keep just

the local terms. These are given by the “direct-direct” correlation function Γdd(|r1−r2|) of

FHNC theory. This approximation is adequate but not optimal.

On the other hand, summing N0,pp′hh′ over the hole states, Eq. (2.18), relates N (1, 2) to

the static structure function. Accurate results are available for S(q), either from simulations

[33, 34] or from the FHNC-EL summation technique [28, 35]. An alternative strategy to

deal with non-local operators is therefore to demand that these results are reproduced in

whatever approximate form one chooses to use. In this sense, by choosing N (1, 2) to be

local, naming the corresponding function Γdd(r), and demanding that this operator in (2.18)

gives the known static structure function, we obtain the relationship

S(q) = SF(q)
[
1 + Γ̃dd(q)SF(q)

]
(4.1)

as a definition of Γ̃dd(q) in terms of S(q). We adopt this view here and define the “best”

local approximation for N (1, 2) such that it reproduces the best known S(q). Since the

exact S(q) contains a summation of exchange terms, this implies that their contribution to

S(q) is mimicked by a local contribution to Γ̃dd(q).

An “optimal” local approximation for the effective interaction W(1, 2) can be obtained

along similar lines. From Eqs. (2.14) and (2.11) we have

H ′
0,pp′hh′ = W0,pp′hh′ +

1

2
(eph + ep′h′)N0,pp′hh′ . (4.2)

The ground state Euler equation for pair correlations (2.19) implies that the Fermi sea

average of H ′
0,pp′hh′ vanishes. Postulating a local W(1, 2) ≈ W (r12), consistency relates this

quantity to the local approximation of N (1, 2). This leads to [28]

W̃ (q) = −
t(q)

SF(q)
Γ̃dd(q) . (4.3)

Our procedure of using the relationships (2.18) and (2.19) to construct local approxima-

tions for N0,pp′hh′ and W0,pp′hh′ can be generalized to a systematic definition of optimal local

approximations for the matrix elements of any non-local d−body operator: Averaging the

matrix elements, which depend on d particle and d hole momenta, over the Fermi sea, gen-

erates functions of the momentum transfers qi≡ pi−hi only. Spelling out Fermi occupation
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functions nh and n̄p≡ 1−np explicitly, this reads for a one-body quantity

Oq ≡

∑
h n̄pnh O0,ph∑

h n̄pnh 1
=

1

NSF(q)

∑

h

n̄h+qnh O0, ph . (4.4)

The extension to d variables is obvious,

Oq1,...,qd
=

∑

h1...hd

d∏

i=1

n̄pi
nhi

NSF(qi)
O0, p1...pd h1...hd

, (4.5)

as is the extension to matrix elements Om,n6=o.

We emphasize again that the quantities Oq1,..., qd
contain all exchange and correlation

effects in a localized manner. Therefore, effects related to the zph, as well as CBF corrections

to the eph , are already part of W̃ (q) and Γ̃dd(q). This implies, amongst others,

Mp′h′,ph ≈ δp,p′δh,h′ + 〈hp′|Γdd|ph
′〉 , (4.6)

and the relationship (3.51) between the supermatrices C and N simplifies to

C = 1 +
1

2
N . (4.7)

B. Matrix elements

The localization procedure discussed above for N (1, 2) implies

N =
1

N
Γ̃dd(q)


 δq,+q′ δq,−q′

δq,−q′ δq,+q′


 n̄p n̄p′nhnh′ . (4.8)

To simplify the notation, the δq,±q′ functions, together with the Fermi occupation numbers,

are understood to be implicit in all the matrices from now on. Matrix products, i.e. sums

over particle–hole labels, reduce to factors SF(q). The inverse of C is readily obtained from

(4.7) as

C−1 = 1 −
1

2N
X̃dd(q)


 1 1

1 1


 . (4.9)

with

X̃dd(q) =
Γ̃dd(q)

1 + SF(q) Γ̃dd(q)
. (4.10)

In the spirit of the discussion in Sec. IVA, this is our definition of X̃dd(q). According to

(A13), it can also be identified with the sum of all non-nodal diagrams.

20



Multiplying C−1 from both sides to (3.57) yields the ω dependent effective interactions,

Vp−h(ω) =
1

N


 Ṽ

A
(q; ω) Ṽ

B
(q; ω)

Ṽ ∗
B

(q;−ω) Ṽ ∗
A

(q;−ω) .


 . (4.11)

To summarize, the localization of N (1, 2) in an S(q) conserving manner has uniquely

fixed the functions Γ̃dd(q) and X̃dd(q) and, consequently, the corresponding matrices N and

C−1. Calculating Vp−h(ω) from (3.57) has thus been reduced to calculating V
A,B

(q;ω) from

W.

In order to derive the explicit expressions, we need the optimal local form of (3.43). This

involves two steps, calculating the localized versions of the three-body vertices Kph,p′p′′h′h′′

and K
(ph)
p′p′′h′h′′,0, and deriving the inverse of the four-body energy matrix [E(ω)]−1. We

expect these quantities to be sufficiently accurate within the convolution approximation,

since improving on this only marginally changes the results [7] for bosons.

The details of the derivation of the local three-body vertices K̃q,q′q′′ and K̃
(q)
q′q′′,0 defined

in (3.34)-(3.36) can be found in App. B 3. These are

K̃q,q′q′′ =
~

2

2m

S(q′)S(q′′)

SF(q)SF(q′)SF(q′′)

[
q· q′ X̃dd(q

′) + q· q′′ X̃dd(q
′′) − q2ũ3(q, q

′, q′′)
]

+

[
1 −

SF(q
′)SF(q

′′)

S(q′)S(q′′)

]−1

K̃
(q)
q′q′′,0 , (4.12)

K̃
(q)
q′q′′,0 =

~
2

4m
Γ̃dd(q)

[
S(q′)S(q′′)

SF(q′)SF(q′′)
− 1

]{
q2 S

(3)
F (q, q′, q′′)

SF(q)SF(q′)SF(q′′)
+

[ q · q′

SF(q′)
+

q · q′′

SF(q′′)

]}

(4.13)

Here, S
(3)
F (q, q′, q′′) is the three-body static structure function of non-interacting fermions,

defined in Eq. (B8), and ũ3(q, q
′, q′′) is the ground-state triplet correlation function [28].

The implicit momentum conservation functions δ±q,q′+q′′ ensure that both vertices depend

on the magnitudes of the three arguments only.

Going back to the Lagrangian, we realize that the term K̃
(q)
q′q′′,0 is the coefficient function

of the contributions to L
′(12)(t) containing U1(t)U2(t) which we expect to be small. Our

numerical applications to be discussed below will support this expectation. However, the

vertex K̃q,q′q′′ contains a term of the same form. Neglecting K̃
(q)
q′q′′,0 should, for consistency,

also mean neglecting the same term in K̃q,q′q′′ which is then given by the very simple first
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part of Eq. (4.12). In this term we recover, apart from SF (q) factors, also the Bose version

of the three-body vertex.

C. Effective interactions

Next, the matrix elements (4.12) and (4.13) are used in (3.43) to calculate the dynamic

parts of W,

Wph,p′h′(ω) =
δq,q′

N

[
W̃ (q) + W̃A(q;ω)

]

Wphp′h′,0(ω) =
δq,−q′

N

[
W̃ (q) + W̃B(q;ω)

]
, (4.14)

where the energy independent part W̃ (q) has been defined in Eq. (4.3). Because of the

locality of the three-body matrix elements, we can write for the first dynamic contribution

to (3.43),

∑

p1p2h1h2

∑

p′1p′2h′

1h′

2

Kph, p1p2h1h2

[
E(ω)−1

]
p1p2h1h2,p′1p′2h′

1h′

2

Kp′1p′2h′

1h′

2, p′h′

=
1

N2

∑

q1q′1

K̃q, q1q2 K̃q′1q′2, q

1

N2

∑

h1h2h′

1h′

2

[
E(ω)−1

]
p1p2h1h2,p′1p′2h′

1h′

2

=
1

N2

∑

q1q2

K̃q, q1q2 Ẽ
−1(q1, q2;ω)K̃q1q2, q (4.15)

with implicit factors δq,q1+q2 δq,q′

1+q′

2
for momentum conservation. The other contributions

to (3.43) are calculated analogously. The inverse four body energy matrix and the pair

propagator
1

N2

∑

hh′h′′h′′′

[
E(ω)−1

]
pp′hh′,p′′p′′′h′′h′′′

≡ δq,q′′δq′,q′′ Ẽ
−1(q, q′;ω) . (4.16)

are calculated and discussed in App. C. Basically, the pair spectrum is built from two

particle-hole spectra. These are, however, not centered around free particle spectra but

around the Feynman dispersion relation. Consequently, our pair propagator also includes

two-phonon intermediate states.

The resulting expressions for the energy-dependent W̃
A,B

(q;ω) are then

W̃A(q;ω) =
1

2N

∑

q′q′′

[
|K̃q,q′q′′|

2 Ẽ−1(q′, q′′;ω) + |K̃(q)
q′q′′,0|

2 Ẽ−1∗(q′, q′′;−ω)
]
, (4.17)

W̃B(q;ω) =
1

2N

∑

q′q′′

[
K̃

(q)
q′q′′,0K̃q,q′q′′

(
Ẽ−1(q′, q′′;ω) + Ẽ−1∗(q′, q′′;−ω)

)]
. (4.18)
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Similar to the boson theory, the dynamic parts of the interactions are expressed in terms

of three-body vertices and an energy denominator, the latter now being “spread” over the

whole width of a two-particle-two-hole band.

The last step in our formal derivations is the calculation of Vp−h(ω). Carrying out the

operations (3.57) yields the energy-dependent, but local functions

Ṽ
A
(q;ω) = Ṽp−h(q) + [σ+

q ]2 W̃
A
(q;ω) + [σ−

q ]2 W̃ ∗
A

(q;−ω)

+ σ+
q σ

−
q

(
W̃

B
(q;ω) + W̃ ∗

B
(q;−ω)

)
, (4.19)

Ṽ
B
(q;ω) = Ṽp−h(q) + [σ+

q ]2 W̃
B
(q;ω) + [σ−

q ]2 W̃ ∗
B

(q;−ω)

+ σ+
q σ

−
q

(
W̃

A
(q;ω) + W̃ ∗

A
(q;−ω)

)
, (4.20)

with σ±
q ≡ [SF(q) ± S(q)]/2S(q) .

V. DENSITY-DENSITY RESPONSE FUNCTION

A. General form

We now derive the density-density response function χ(q;ω). The final result for the

dynamic effective interactions, (4.19), (4.20), is inserted into (3.58), which is solved for δc.

The induced density is then obtained from Eq. (3.47). Using ρF
0,ph(r) = ρ

N
e−i(p−h)r we obtain

δρ(q;ω) =
ρ

2

∑

h

[
zh+q,h δc

(1+)
h+q,h(ω) n̄h−q + zh−q,h δc

(1−)
h−q,h(ω) n̄h+q

]

≈
NSF(k) ρ

2

[
δc(1+)(q;ω) + δc(1−)(q;ω)

]
, (5.1)

where we abbreviate in the second line δc(1±)(q;ω) ≡ 1
N

∑
h δc

(1±)
ph (ω). Spelling out

Eqs. (3.58) explicitly,

2h̃F
0,ph(ω) = (±(~ω+iη) − eph) δc

(±)
ph (ω)

− Ṽ
A

(q;ω) δc(±)(q;ω) − Ṽ ∗
B

(q;−ω) δc(∓)(q;ω) , (5.2)

dividing by (±(~ω+iη) − eph) and summing over h yields

δc(1±)(q;ω) =

[
2

N
h̃ext(q;ω) + Ṽ

A
(q;ω) δc(1±)(q;ω) + Ṽ ∗

B
(q;−ω) δc(1∓)(q;ω)

]


κ0(q; ω)

κ∗0(q;−ω)

(5.3)
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with the positive-energy Lindhard function

κ0(q;ω) ≡
1

N

∑

h

n̄pnh

~ω − eph + iη
(5.4)

which is related to the full Lindhard function by

χ0(q;ω) = κ0(q;ω) + κ∗0(q;−ω) . (5.5)

Solving for δc(1±)(q;ω) and inserting into (5.1) we obtain for χ(q;ω)

χ(q;ω) = N(q;ω)/D(q;ω)

N(q;ω) = κ0(q;ω) + κ∗0(q;−ω)

− κ0(q;ω)κ∗0(q;−ω)
[
Ṽ

A
(q;ω) + Ṽ ∗

A
(q;−ω) − Ṽ

B
(q;ω) − Ṽ ∗

B
(q;−ω)

]

D(q;ω) = 1 − κ0(q;ω)Ṽ
A
(q;ω) − κ∗0(q;−ω)Ṽ ∗

A
(q;−ω)

+ κ0(q;ω)κ∗0(q;−ω)
[
Ṽ

A
(q;ω)Ṽ ∗

A
(q;−ω) − Ṽ

B
(q;ω)Ṽ ∗

B
(q;−ω)

]
. (5.6)

Eq. (5.6) is the TDHF response function for local and energy dependent interactions. Ev-

idently, the conventional RPA form (1.7) can only be recovered if the interactions Ṽ
A
(q;ω)

and Ṽ
B
(q;ω) are energy independent and equal. Clearly, our result (5.6) significantly dif-

fers from (1.7) with Ṽp h̄(q) simply replaced by some energy dependent Ṽp h̄(q;ω). Such an

RPA-like form for the density-density response function lacks microscopic justification.

B. Long wavelength limit

In the limit q → 0, the spectrum is dominated by collective excitations, e.g. zero sound or

plasmons. Both vertices (4.12) and (4.13) vanish linearly in q, hence W̃
A
(q;ω) and W̃

B
(q;ω)

are quadratic in q as q → 0.

For neutral systems, the dynamic corrections to the effective interactions Ṽ
A,B

(q;ω) in

(4.19), (4.20) are therefore negligible in the long wavelength limit. The long wavelengths

density-density response function is then given by its RPA form (1.7), with the static particle-

hole interaction Ṽp h̄(q). The zero sound speed c0 is determined by the long wavelength

solution of the RPA equation.

For charged quantum fluids, σ±
q ≈ SF(q)/2S(q), hence Ṽ

A
(q, ω) = Ṽ

B
(q, ω), which again

implies the RPA form (1.7)

χ(q;ω) =
χ0(q;ω)

1 − χ0(q;ω) Ṽ
A
(q;ω)

as q→0 . (5.7)
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However, now the effective interaction is

Ṽ
A
(q;ω) = Ṽp h̄(q) +

S2
F (q)

4S2(q)

[
W̃

A
(q;ω) + W̃

A
(q;−ω) + W̃

B
(q;ω) + W̃

B
(q;−ω)

]
as q→0 .

(5.8)

The static particle-hole interaction approaches the Coulomb potential ṽc(q) = 4πe2/q2

Ṽp h̄(q) = ṽc(q) + V0 as q→0 . (5.9)

We can therefore write (5.8) as

Ṽ
A
(q;ω) = Ṽ

B
(q;ω) = ṽc(q) + V0(ω) as q→0 . (5.10)

As for charged bosons [36], the two-pair fluctuations modify the RPA result. The static

potential Ṽp h̄(q) and W̃A,B(q;ω) contribute for q→0 at the same level.

C. Static response function

Ẽ−1(q, q′;ω=0) is real and negative, this is most easily seen from the representation (C9).

Therefore, all interactions W̃
A,B

(q; 0) in (4.17)-(4.18) and Ṽ
A,B

(q; 0) in (4.19)-(4.20) are real.

The response function (5.6) can again be cast into the RPA form

χ(q; 0) =
χ0(q; 0)

1 − Ṽstat(q)χ0(q; 0)
, (5.11)

with a static effective interaction

Ṽstat(q) ≡ Ṽp h̄(q) +
S2

F(q)

2S2(q)

[
W̃

A
(q; 0) + W̃

B
(q; 0)

]
. (5.12)

Unlike Eq. (5.8), this form holds for all wavelengths.

For short wavelengths the static response function has the asymptotic form [37, 38]

χ(q→∞; 0) = −
2

t(q)
−

8

3t2(q)

〈T̂ 〉

N
+ O(q−5) , (5.13)

where 〈T̂ 〉 is the kinetic energy. In the RPA, one obtains in Eq. (5.13) only the kinetic

energy of the non-interacting system. To obtain the correct asymptotic form, it is therefore

necessary to include pair and, possibly, higher order fluctuations.

Again, we know the result for bosons as a guide: treating pair fluctuations in the “con-

volution” approximation leads to the correct asymptotic behavior with 〈T̂ 〉 in (5.13) given

in that approximation [18].
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We show in App. D that

Ṽstat(q→∞) =
1

2
W̃

A
(q→∞; 0) = −

2

3

〈T 〉CA − TF

N
, (5.14)

where 〈T 〉CA is the kinetic energy in “uniform limit” or “convolution” approximation (A12).

Hence, inserting the short wavelength expansion of the Lindhard function, the static response

function (5.11) indeed assumes the form (5.13)

χ(q; 0) = −
2

t(q)
−

8

3t2(q)

〈T 〉CA

N
as q→∞ , (5.15)

with the kinetic energy being calculated in the uniform limit approximation (A12).

VI. APPLICATIONS

A. Dynamic structure of 3He

1. Motivation

The helium fluids are the prime examples of strongly correlated quantum many-body

systems. They have been studied for decades, and still offer surprises leading to new insight.

It is fair to say that understanding the helium fluids lies at the core of understanding other

strongly correlated systems. The most important and most interesting field of application

of our theory is therefore liquid 3He.

Recent developments [7, 39] have brought manifestly microscopic theories of 4He to a level

where quantitative predictions of the excitation spectrum are possible far beyond the roton

minimum without any information other than the underlying microscopic Hamiltonian (2.1).

3He is the more challenging substance for both, theoretical and experimental investigations.

Experimentally, the dynamic structure function S(q;ω) of 3He is mostly determined by

neutron scattering. The results are well documented in a book [40], the theoretical and

experimental understanding a decade ago has been summarized in Ref. 25. Recent inelastic

X-ray scattering experiments have led to a controversy on the evolution of the zero sound

mode at intermediate wave-vectors [41–43], we will comment on this issue below.

The RPA (1.7) suggests that S(q;ω) can be characterized as a superposition of a collective

mode similar to the phonon-maxon-roton in 4He, plus an incoherent particle-hole band

which strongly dampens this mode [44]. The picture is qualitatively adequate but misses
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some important quantitative physics: In 3He the RPA, when defined through the form (1.7)

and such that the sum rules (1.4)–(1.5) are satisfied, predicts a zero-sound mode that is

significantly too high. This is consistent with the same deficiency of the Feynman spectrum

(1.6) in 4He. Drawing on the analogy to 4He [44], the cure for the problem is, as pointed

out above, to include pair fluctuations δu
(2)
pp′hh′(t) in the excitation operator.

An alternative, namely to lower the collective mode’s energy by introduction of an effec-

tive mass in the Lindhard function, leads to various difficulties: First, one violates the sum

rules (1.4)–(1.5), i.e. one disregards well established information on the system. Second,

the effective mass is far from constant; it has a strong peak around the Fermi momentum

[45–48], a secondary maximum around 2kF, and then quickly falls off to the value of the

bare mass. In fact, it is not even clear if the notion of a “single (quasi-)particle spectrum”

that is characterized by a momentum is adequate at these wave numbers.

The localization procedure of Sec. IV implies that the only input needed for the applica-

tion of our theory is the static structure function S(q), whereas the single-particle spectrum

is that of a free particle. We hasten to state that we do not claim that the precise location

of the single-particle spectrum is completely irrelevant for the energetics of the zero sound;

we only claim that the dominant mechanism in Bose and Fermi fluids is the same, namely

pair-fluctuations. In order to maintain the sum rules (1.4)–(1.5), any modification of the

particle-hole spectrum must go along with an inclusion of exchange effects. At the level of

single-particle fluctuations [4, 5], such a calculation is quite feasible [49, 50]. However, to

describe the dynamics of 3He correctly, it is insufficient to include only the CBF single par-

ticle energies (2.14). These suggest a smooth spectrum with an effective mass slightly less

than the bare mass, in contradiction to the highly structured spectrum mentioned already

above.

2. Collective mode

For our calculations we have used input from the FHNC-EL calculations of Ref. 28 that

utilizes the Aziz-II potential [51] and includes optimized triplet correlations as well as four-

and five-body elementary diagrams. An overview of our results for bulk 3He and a compari-

son with both the RPA and experimental data is shown in Figs. 1 for four different densities.

The most prominent consequence of pair fluctuations is a change in energy and strength of
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FIG. 1: (Color online) S(q;ω) of 3He, for the densities ρ = 0.0148, 0.0166, 0.018, 0.02Å−3. The

experimental results for the collective mode (dots) are from inelastic neutron scattering experi-

ments at the ILL (Ref. 24). The densities 0.0166, 0.0180 and 0.0200 Å−3 correspond in good

approximation to the pressures p = 0, 5, 10 bar [52, 53]. Dashed lines are equidistant contours

marking the same absolute value in all plots. Solid lines are the boundaries of the particle-hole

continuum for m∗ = m. The blue boxes show the RPA result for the collective mode.

the collective mode and its continuation into the particle-hole band. Pair fluctuations also

contribute a continuum background outside the particle-hole continuum.

At long wavelengths, the collective mode is sharp and well defined above the particle-hole

band, exhausting most of the sum rules (1.4) and (1.5). In this regime, the RPA provides

a faithful description of the physics. This is in accordance with the observation that the

dynamic correction to the effective interactions vanish, for neutral systems, in the long-
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wavelength limit. With increasing density, the speed of sound increases and the phonon

becomes farther separated from the particle-hole band.

Further details are shown in Fig. 2. At intermediate wavelengths the collective mode

bends down due to the attractiveness of the effective interaction. This is where the dynamic

theory starts to deviate visibly from the RPA. Evidently, pair fluctuations are the major

cause for lowering the energy of the collective mode, although they do not completely bridge

the discrepancy between the RPA and experiments [24, 25]. This is expected because, for

bosons, pair fluctuations bridge only about two thirds of the gap between the Feynman and

the experimental roton energy [7, 17]. Three-body and higher-order fluctuations are also

important [18]. We expect that these corrections are smaller in 3He due to its lower density,

yet not negligible.

When the collective mode enters the particle-hole band, a slight kink in the position of the

maximum in S(q;ω) is expected, as well as an abrupt broadening of the mode. At saturated

vacuum pressure, shown in the left part of Fig. 2, these effects are difficult to identify in the

experiments [25]. A possible reason is that the observed mode stays always very close to

the particle-hole band. The measured mode width in Fig. 2 gives no clear indication of the

upper boundary of the particle-hole band other than that it is determined by a spectrum

with an average effective mass of m∗ / m.

The situation is much clearer at higher pressure: With increasing density, the speed of

sound increases, separating the collective mode farther from the particle-hole band. For

ρ= 0.02 Å−3 a clear kink is identified at q≈ 5 nm−1 (Fig. 2 right part). The broadening is

also more abrupt and, in particular, does not increase for larger values of q. Similar to SVP,

explaining these data requires a boundary of the particle-hole band that is even above that

of the non-interacting Fermi fluid. Damping due to multiparticle excitations is, on the other

hand, for both densities far too small to account for the experimentally seen broadening of

the zero sound mode.

3. Frequency dependence of S(q;ω)

For a quantitative discussion we show in Fig. 3 the dynamic structure factor as a function

of frequency at a sequence of wave vectors. We conclude that the RPA quantitatively and

even qualitatively differs from our theory and the experiment. Including pair fluctuations
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FIG. 2: Zero sound mode calculated within the pair fluctuation theory (full blue line), RPA (red

chained line) and experimental data by the ILL group [25] (square symbols) and [24] (circles). The

bars indicate the width of the fit to the data, the line at the bottom of the figure gives the width

due to pair fluctuations enhanced by a factor of 10 to make it visible. The dashed blue line gives

the FWHM of the mode within the particle hole continuum. Left part: ρ = 0.0166Å−3, right part:

ρ = 0.02Å−3.

improves the agreement with experiment significantly. The arrows in panes (c) and (d)

indicate the maximum of the experimentally observed dynamic structure function.

In Fig. 3(b) we also show the consequence of the plausible simplification of our theory

discussed already in connection with Eqs. (4.12) and (4.13): We neglect all terms that

vanish for bosons as well as for large momentum transfers q, q′, q′′ ≥ 2kF . This is K̃
(q)
q′q′′,0

and, consequently, the second term in Kq,q′q′′ , Eq. (4.12). The three-body vertex is then

given by the first term in Eq. (4.12), see also (D1). This simplifies the effective interactions

significantly: Only the first term of Eq. (4.17) for W̃A(q;ω) contributes, and W̃B(q;ω) is

neglected. Fig. 3(b) shows that these simplifications modify our results only marginally, the

form (D1) can therefore be considered a practical and useful simplification of our theory.

Figs. 3(c) and 3(d) show our results for the two momentum transfers q = 2.4 kF =

1.89 Å−1 and q = 3.2 kF = 2.52 Å−1. Recent X-ray scattering experiments in that momentum

range [41–43] appeared to support the notion of a high-momentum collective mode without

visible damping by incoherent particle-hole excitations. Figs. 3(c) and 3(d) show that pair

fluctuations lead to a narrowing of the strength of S(q;ω) compared to the RPA. To facilitate
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the comparison with experiments, we have convoluted our result with the instrumental

resolution of 1.58 meV, the results are also shown in Figs. 3(c) and 3(d). After this, our

results agree quite well with the experimental spectrum. Also, the location of the observed

peak intensity for q = 2.4 kF appears to be consistent with our calculation. The RPA is,

on the other hand, too broad to explain the data. We also point out that a value of the

effective mass close to m∗ ≈ m is consistent with our theoretical calculations [48]. We have

to conclude therefore that the observed width of the X-ray data are also consistent with our

picture.

After a regime of strong damping we see in Figs. 1 an intensity peak at momentum

transfer of q ≈ 2.5kF. With increasing density, this peak moves towards the lower edge

of the particle-hole band and becomes sharper. Such a peak should be identified with the

remnant of the roton excitation in 4He, broadened by the particle-hole continuum. The

overall agreement with the experiment is quite good, see Fig. 1 of Ref. 24. Our theory

predicts a “roton minimum” that is slightly above the observed energy; this is expected

because for bosons a similar effect is observed. To obtain a higher accuracy, triplet- and

higher order fluctuations must be included [18].

4. Static response

For completeness, and because the quantity should be obtainable by experiments and

simulations similar to those for 4He [54, 55] and on bulk jellium [56], we show in Fig. 4 the

static response function χ(q, 0) of 3He at ρ = 0.0166Å−3. The main peak, which is a result

of the local symmetry in the fluid, is visibly raised compared to the RPA result. We suspect,

form experience with the boson theory, that this peak is still a bit underestimated.

The comparison also lets us assess the validity of an energy independent particle hole

interaction. Fig. 5 shows a comparison between the FHNC Ṽp h̄(q) and the static effec-

tive interaction (5.12). Evidently, the qualitative structure is very similar, in particular

Ṽp h̄(q→0) = Ṽstat(q → 0) as discussed in Sec. VB. The most visible difference is that

Ṽstat(q) approaches a constant for large q, see Eqs. (5.13) and (5.14).
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FIG. 3: (Color online) S(q;ω) for 3He as a function of energy at ρ = 0.0166Å−3 for a sequence

of momentum transfers q = 0.8, 1.6, 2.4, 3.2 kF (a)-(d). Also shown is the RPA (dashed, red).

The solid blue line is the result of this work with the simplified W̃
A
(q;ω) and W̃

B
(q, ω) = 0 as

discussed in the text. In pane (b), we also show the results when the full W̃
A
(q;ω) and W̃

B
(q;ω)

of Eqs. (4.17) and (4.18) are retained (short dashed magenta line). The results from the different

approximations are almost indistinguishable in panes (a),(c) and (d) and therefore not shown. The

black dash-dotted line in panes (a) and (b) are fits to the experimental results of Ref. 24. In panes

(c) and (d) we indicate the maximum of the experimentally observed dynamic structure function

by an arrow. We also plot in panes (c) and (d) recent inelastic X-ray diffraction data obtained

by Albergamo et al. [41] (boxes) as well as our theoretical results folded with the experimental

resolution (dashed line).
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FIG. 4: (color online) Static response of 3He at ρ = 0.0166Å−3. The red curve shows the RPA

result whereas the blue line is the result of this work.
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FIG. 5: (color online) Effective interaction of 3He at ρ = 0.0166Å−3. The red curve shows the

static effective interaction Ṽp h̄(q) whereas the blue line is Ṽstat(q).

B. Electron liquid

The second typical area of application of microscopic many-body methods is the electron

liquid [38, 57]. It provides the basic understanding of valence electron correlations in simple

metals. In its two-component version it has proved useful for describing the electron-hole
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liquid in semiconductors.

Compared to the helium fluids, the soft repulsion of the Coulomb interaction induces

substantially weaker correlations. Therefore, electrons are much less challenging than 3He

and the RPA (or slightly modified versions) contain much of the relevant physics.

Correlations are somewhat more pronounced in layered realizations of the electron liquid,

such as Si- and GaAs-AlGaAs hetero-structures. For electrons on He surfaces preliminary

results show [58] that at very low densities, again, a roton-like structure evolves for inter-

mediate wave vectors.

We have seen that pair fluctuations contribute, already at long wave lengths, to the

static response function, see our discussion in Secs. VB-VC. Most important are, of course,

those effects that are qualitatively new consequences of multiparticle fluctuations. These

are the short–wavelength behavior of the static response function and the appearance of a

new feature in the dynamics structure function, namely the “double plasmon” excitation.

The latter has raised new interest [26, 27] in studying the dynamics of electrons at metallic

densities in this (q;ω) region.

1. Double Plasmon

Figure 6 shows the dynamic structure factor S(q;ω) obtained from the pair fluctuation

theory. We have chosen two different densities ρ ≡ 3/(4πr3
sa

3
B), corresponding to Al, rs =

2.06, and Na, rs = 3.99. Immediately obvious are the finite width (i.e. lifetime) of the

plasmon above the particle-hole band, and a second peak-like structure around twice the

plasma frequency ωp.

Characteristic cuts at constant wave vectors q are shown in Fig. 7 for Na. In parts (a)

and (b) the plasmon is outside the particle-hole band and rather sharp; the second peak

slightly above 2~ωp = 4.5 tF is clearly visible. We identify this feature, which has also been

observed experimentally [27], with the “double-plasmon”.

The “double-plasmon” excitation is due to the emergence of an imaginary part in Ṽ
A
(a, ω)

at ω = 2ωp, caused by the appearance of an imaginary part of the pair propagator

Ẽ−1(q′, q′′;ω). It is therefore a genuine multipair effect. The properties of the pair propa-

gator are discussed in in App. C2. From (C19) we obtain for the double-pole part of the
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FIG. 6: (Color online) The figure shows S(q;ω) of an electron liquid with density parameters

rs = 2.06 and rs = 3.99 appropriate for Al and Na, respectively. As in Figs. 1, dark red regions

correspond to high intensity (logarithmic scale). The blue line is the position of the double-

plasmon peak obtained in the present work, red dots are experimental results [27] from inelastic

X-ray scattering and green diamonds results from Green’s functions calculations [27, 59].

dynamic interaction (5.8)

ℑmṼ
A
(q→0;ω) =

9~
2ω2

p

16t2F

π

8N

∑

q′

[
kF

q
Kq,q′q′′

]2

×

z2(q′) [δ(2~ωc(q
′) − ~ω) + δ(2~ωc(q

′) + ~ω)] . (6.1)

In Fig. 7(c), the plasmon is broad and Landau-damped, while the double-plasmon still

shows a clear structure, even at the brink of entering the particle-hole continuum. Some

structure in the spectrum persists to even higher momentum transfers: At q = 2.0 kF in

Fig. 7(d), traces of the ordinary as well as the double plasmon show up as a faint double-

peak structure, with its minimum where the RPA yields a single maximum.

We now investigate the nature of the slight but measurable [27] peak in the loss function

at approximately twice the plasmon frequency ωp. Fig. 8 shows S(q, ω) for rs = 3.99 for

three different momentum transfers, the position of the double plasmon is marked with

arrows.

We have already shown in Figs. 6 the location of the double plasmon excitation and

a comparison with the experimental inelastic X-ray scattering data [26, 27]. The double-

plasmon is also accessible by Green’s function methods [59]. These results are very close to
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FIG. 7: (Color online) S(q0;ω) for Na (rs = 3.99), at wave vectors q0 (a) 0.15 kF, (b) 0.6 kF, (c)

1.3 kF, and (d) 2.0 kF. The full (blue) lines are our pair fluctuation theory, dashed (red) lines are

the RPA results using Ṽp h̄(q). To make the plasmon visible, the RPA data have been broadened

artificially by adding an imaginary frequency of 10−5eV/~. The dotted (green) lines in (a) and (b)

refer to neglecting K
(q)
q′q′′,0 in Eqs. (4.12)-(4.13), and the dash-dotted (black) lines include ground

state triplet correlations. At larger momentum transfers these effects are too small to be visible.

those of our pair fluctuation theory. This can be understood from the fact that the leading

terms of the long-wavelength part of the pair propagator actually contain no correlation

effects, see Eq. C29. Hence, theories that are less well suited than CBF for the description

of strong correlations should, similar to the single plasmon, give the right answer. The

remaining discrepancy with experiments must therefore be attributed to lattice effects. Fig.

8 shows more details of S(q, ω) at a sequence of three different momentum transfers for

rs = 3.99 (the position of the double-plasmon is marked with arrows), in particular in order

to assess the relative strength of the double-plasmon excitation compared to the underlying

continuum.
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line). The arrows mark the position of the double-plasmon.
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FIG. 9: Static response function (left), and static effective interaction (right) of the electron liquid

at rs = 3.99. Full blue lines are our results, black dash-dotted lines a fit based on the simulations

[56, 60]. Dotted red and thin broken lines show the RPA with Ṽp h̄(q) and ṽc(q), respectively.

Monte Carlo studies of the static response function χ(q; 0) were performed for two- and

three-dimensional 4He [54, 55] and on bulk jellium [56] for rs = 2, 5 and 10. While χ(q;ω)

is accessible experimentally, for electron liquids it is popular to define a static local field
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correction to the Coulomb interaction ṽc(q) via [38]

Ṽstat(q) ≡ ṽc(q) (1 −G(q)) . (6.2)

From our analysis it is clear that a response function in the RPA form can be defined only

for q→ 0 and at ω = 0. Therefore, only in these two cases such a function is a physically

meaningful quantity.

In the q→∞ limit, our theory yields a finite value for Vstat(q), resulting in G(q) ∝ q2,

whereas Ṽp h̄(q) falls off like the bare potential. This correct q−dependence arises solely from

multiparticle fluctuations. In Fig. 9 we compare our results with the Monte Carlo data, and

with curves calculated from an analytic analytic fit for −vc(q)G(q) obtained from the latter

[60]. The agreement is remarkably good.

No trace of a possible “hump” in G(q) around 2kF as a remnant of some charge- or spin-

density wave instability was found in the simulations, but it also was not fully conclusively

ruled out. Our results, clearly, do not yield any such peak structure at 2kF either.

VII. SUMMARY

We have presented the fermion version of theories of the dynamic response of Bose flu-

ids that have been developed in the past successfully by Jackson, Feenberg, and Campbell.

These methods form the basis of our present understanding of the dynamics of Bose fluids.

Our derivations were admittedly lengthy but eventually led to a reasonably compact formula-

tion of the dynamic response of correlated Fermi fluids. Our final result could be formulated

as a set of TDHF equations in terms of dynamic and non-local effective interactions.

For the first applications we have reduced the theory to a practical level capturing the

relevant physics, while avoiding many of the technical complications. In particular the

version of the equations of motion spelled out in Appendix F has proved to be adequate for

systems as different as 3He and homogeneous electrons. It is hardly more complicated than

TDHF. The sole required input is the static structure function S(q) which can, in principle,

also be obtained from simulations. Our developments have led to quantitative improvements

of our understanding of 3He and electrons as well as to the description of qualitatively new

effects like mode-mode coupling, multiparticle spectra, and damping.

We have, at various places, commented on the role of the particle-hole spectrum. In
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the homogeneous electron liquid, the interaction corrections to the single-particle spectrum

are relatively small [35, 61], the theory formulated here should therefore suffice for many

purposes. The situation is more difficult in 3He: As is seen from our results, good agreement

with experiments can be reached by assuming a spectrum of non-interacting fermions. In

particular looking at the zero-sound damping suggests that, at q ≈ kF , the boundary of

the single-particle continuum should be close (perhaps even above) to the one given by a

non-interacting spectrum, cf. Fig. 2. This is not in contradiction to experiments [52, 62]

suggesting an effective mass ratio m∗/m ≈ 3 at the Fermi surface. One reason is that

the effective mass ratio drops rapidly with distance from the Fermi surface. The more

fundamental reason however, is that the concept of describing the particle-hole excitations

by a spectrum that depends on momentum only is questionable at elevated wave numbers.

More precisely, the single-particle motion is described by a non-local, energy dependent self-

energy. Upon closer examination it becomes clear that exchange effects are intimately related

to self-energy corrections and exchange effects must therefore be included simultaneously.

In independent work, we have used the ideas of CBF theory as well as the Aldrich-

Pines pseudopotential theory to calculate the single-particle propagator in 3He. In both

three and two dimensions, we found good agreement between the theoretical effective mass

near the Fermi surface, and that obtained experimentally from specific heat measurements

[47, 48, 63]. However, the somewhat ad-hoc use of the effective interactions in that work is

still awaiting rigorous justification. This is the subject of future work.
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Appendix A: Ground state theory

1. The essence of FHNC-EL

For the sake of the discussions of this work we here briefly review the essence of variational

FHNC theory. The diagram expansion and summation procedure that is used to derive, for

the variational wave function (2.2) a set of equation for the calculation and optimization

of physical observables has been described at length in review articles [21] and pedagogical

literature [22]. Details on the specific implementation for 3He are given in Ref. 28.

Here, we spell out a reduced set of equations. These do not provide the quantitatively best

implementation [28] of the FHNC-EL theory, but they contain the relevant physics: They

provide, in the language of perturbation theory, a self-consistent approximate summation

of ring– and ladder diagrams [29], thereby capturing both, long- as well as short-ranged

features.

In the simplest approximation [64], which contains, as we shall see momentarily, the

“RPA” expression (1.7), the Euler equation (2.5) can be written in the form [28]

S(q) =
SF(q)√

1 + 2
S2

F(q)
t(q)

Ṽp h̄(q)

, (A1)

where t(q) = ~
2q2/2m is the kinetic energy of a free particle, and

Vp h̄(r) = [1 + Γdd(r)] v(r) +
~

2

m

∣∣∣∇
√

1 + Γdd(r)
∣∣∣
2

+ Γdd(r)wI(r) (A2)

is what we call the “particle-hole interaction”. Auxiliary quantities are the “induced inter-

action”

w̃I(q) = −t(q)

[
1

SF(q)
−

1

S(q)

]2 [
S(q)

SF(q)
+

1

2

]
. (A3)

and the “direct-direct correlation function”

Γ̃dd(q) = (S(k) − SF(q))/S2
F(q) (A4)

(see also Eq. (4.1)). Eqs. (A1)–(A4) form a closed set which can be solved by iteration.

Note that the Jastrow correlation function has been eliminated entirely.

The relationship (A1) between the static structure function S(q) and the particle-hole

interaction Ṽp h̄(q) can also be derived from Eq. (1.7), if the Lindhard function is replaced
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with its “mean spherical” or “collective” approximation (CA),

χCA

0 (q;ω) =
2t(q)

(~ω + iη)2 − t2(q)/S2
F(q)

. (A5)

The essence of this approximation is to replace the branch cut in χ0(q;ω) by a single pole;

its strength chosen such that the first two sum rules agree when evaluated with the full

Lindhard function χ0(q;ω) or in the collective approximation χCA
0 (q;ω), i.e.

ℑm

∫
dω χCA

0 (q;ω) = ℑm

∫
dω χ0(q;ω)

ℑm

∫
dω ω χCA

0 (q;ω) = ℑm

∫
dω ω χ0(q;ω) . (A6)

In fact, (1.7) together with (A5) or, alternatively,

Ṽp h̄(q) =
t(q)

2

(
1

S2(q)
−

1

S2
F(q)

)
(A7)

can be used [28] to define the particle-hole interaction from an accurately known S(q).

The energy, consisting of kinetic and potential energy 〈T 〉 + 〈V 〉, is [28]

E =
3

5
NtF + ER + EQ , (A8)

ER =
ρN

2

∫
d3r

[
g(r) v(r) +

~
2

m
(1 + C(r))

∣∣∣∇
√

1 + Γdd(r)
∣∣∣
2
]
, (A9)

EQ =
N

4

∫
d3q

(2π)2ρ
t(q)

[
S2

F(q) − 1 − S2(q) + S(q)
]

Γ̃2
dd(q) . (A10)

Here, tF is the Fermi energy, and, in this approximation,

C̃(q) = SF(q) − 1 + (S2
F(q) − 1)Γ̃dd(q) . (A11)

To make the connection with the limiting behavior of χ(q, 0) in Sec. VC, we next spell

out what is known as the “uniform limit” or “collective” approximation (CA). Products of

functions which in coordinate space vanish for r → ∞ are considered small. This implies to

expand ∇
√

1 + Γdd(r) ≈
1
2
∇Γdd(r) and to neglect C(r). The kinetic energy then is

〈T 〉CA = TF +
1

4

∑

q

t(q)S(q) X̃2
dd(q) . (A12)

Here, TF = 3NtF/5, and X̃dd(q) is the “non-nodal” function. In our reduced FHNC approx-

imation, X̃dd(q) is related to the static structure factor by

X̃dd(q) =
1

SF(q)
−

1

S(q)
. (A13)
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FIG. 10: Diagrammatic representation of some contributions to ρ0,ph(r). The upper row shows

the diagrams defining the local approximation. The second row are the leading exchange diagrams

and the third row shows two corrections due to the non-locality of N (1, 2).

Appendix B: Diagrammatic analysis

1. Transition density

We first examine the diagrammatic structure of CBF matrix elements ρ0,ph(r) of the

density operator, (3.10, 3.11). The simplest approximation for Mph,p′h′ has been spelled out

in Eq. (4.6), the corresponding approximation for ρ0,ph(r) is

ρ0,ph(r) = ρF
0,ph(r) + ρ

∫
d3r′

∫
d3r′′

[
δ(r−r′) −

ρ

ν
ℓ2(|r−r′|kF)

]
Γdd(r

′−r′′) ρF
0,ph(r

′′) . (B1)

The diagrammatic representation of some leading diagrams contributing to ρ0,ph(r) is

shown in Fig. 10. As usual, open points represent particle coordinates ri, while filled points

indicate an integration over the associate coordinate space and a density factor. Dashed

lines connecting points ri and rj represent a function Γdd(rij), and oriented solid lines an

exchange function ℓ(rijkF). New elements are particle- and hole-states, depicted as upward
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FIG. 11: Diagrammatic representation of the local approximation for Mph,p′h′ .

(particles) or downward (holes) lines entering or leaving the diagram.

The three leading terms (B1) are shown in the upper row of Fig. 10. In the second

row of Fig. 10 we show the leading exchange diagrams. In the representation (3.10), these

originate from the factors zph in the definition of the ρ̃0,ph(r), these are shown as the first

two diagrams. Exchange terms also originate from the matrix element 〈ph′|Γdd|hp
′〉a, these

are shown as third and fourth diagram in that row. Evidently there is a partial cancellation.

The diagrams shown in that row also serve as an example for how the representations (3.10)

and (3.11) are equal: Starting from the form (3.11), the diagrams originating from the zph-

factors (i.e. the first two diagrams in the second row), have opposite signs; and the exchange

term of 〈pp′|Γdd|hh′〉a yields the third diagram with interchanged particle- and hole labels.

The sum of all three diagrams is the same.

2. The M (I) matrix

Our next task is to show that the diagrams representing M
(I)
ph,p′p′′h′h′′ are a proper subset

of those contributing to Mph,p′p′′h′h′′. We restrict ourselves here to the simplest case, which

is the numerically implemented version. We start with the two-body matrix Mph,p′h′ . As

spelled out in Eq. (4.6), besides the δ-function, the leading contribution is the local term in

the two-body operator

Nloc(1, 2) = Γdd(r12) . (B2)

The diagrammatic representation of this approximation for Mph,p′h′ is shown in Fig. 11.

A diagrammatic expansion of the matrix elements Mph,p′p′′h′h′′ can be derived in exactly

the same way as the corresponding expansions of the two-body matrix elements [31]. Gen-

erally, the Mph,p′p′′h′h′′ are matrix elements of a non-local three-body operator, which can

be expressed in terms of FHNC diagrams. Restricting ourselves again to the numerically
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implemented level, we need these quantities in an approximation equivalent to the “uniform

limit approximation” [17] for bosons. We generalize this approach to fermions by keeping all

diagrams contained in the Bose case plus those, where the end points of the correlation func-

tions are linked by exchange paths (the bosonic g(rij)−1 is identified with the direct-direct

correlation function Γdd(rij) ). This procedure has already been used for deriving the optimal

triplet correlations for the fermion ground state [28]. The diagrammatic representation of

this approximation is shown in Fig. 12, the analytic form is

MCA

ph,p′p′′h′h′′ = δh,h′ 〈ph′′|Γdd(1, 2)|p′p′′〉 − δp,p′ 〈h
′h′′|Γdd(1, 2)|hp′′〉

+
1

2
〈ph′h′′|Γdd(3, 1) Γdd(1, 2)|hp′p′′〉

−
1

2

∑

h1

〈ph′′|Γdd|h1p
′′〉 〈h′h1|Γdd|p

′h〉 −
1

2

∑

h1

〈ph′|Γdd|h1p
′〉 〈h′′h1|Γdd|p

′′h〉

+ 〈ph′h′′|Γdd(1, 2) Γdd(2, 3)|hp′p′′〉

−
∑

h1

〈ph′|Γdd|hh1〉 〈h
′′h1|Γdd|p

′′p′〉 −
∑

h1

〈ph1|Γdd|hp
′〉 〈h′h′′|Γdd|h1p

′′〉

+ 〈ph′h′′|ΓCA

ddd(1, 2, 3)|hp′p′′〉

+ {(p′h′) ↔ (p′′h′′)} . (B3)

Here, in convolution approximation,

ΓCA

ddd(r1, r2, r3) =
ρ

2

∫
d3r4 Γdd(r1 − r4)Γdd(r2 − r4)Γdd(r3 − r4)

+
ρ2

2ν

∫
d3r4 d

3r5 ℓ
2(|r4 − r5|kF)Γdd(r1 − r4)Γdd(r2 − r5)Γdd(r3 − r5)

+
ρ2

ν

∫
d3r4 d

3r5 ℓ
2(|r4 − r5|kF)Γdd(r1 − r4)Γdd(r3 − r4)Γdd(r2 − r5)

+
ρ3

ν2

∫
d3r4 d

3r5 d
3r6 ℓ(|r4 − r5|kF)ℓ(|r5 − r6|kF)ℓ(|r6 − r4|kF)

×Γdd(r1 − r4)Γdd(r2 − r5)Γdd(r3 − r6) . (B4)

The first two lines are invariant under exchanging r2 ↔ r3, equivalent to exchanging (p′h′) ↔

(p′′h′′) in (B3).

Optimized triplet correlations improve the description of the ground-state structure, in

particular in the area of the peak of the static structure function and also improve, for

bosons, the density dependence of the spectrum [17]. These correlations add another term

to the three-body function ΓCA
ddd(r1, r2, r3). The expressions are lengthy [28], we refrain from

44



spelling them out here and just show the diagrammatic representation of some typical terms

in the last row of Fig. 12.

Per definition in (3.16), M
(I)
ph,p′p′′h′h′′ is to be constructed such that its matrix product

with Mph,p′h′ reproduces Mph,p′p′′h′h′′. A low-order manifestation of this is easily verified

with choosing for M
(I)
ph,p′p′′h′h′′ the uniform limit diagrams shown in the first row of Fig. 12,

M
(I) CA

ph,p′p′′h′h′′ =
{
δh,h′〈ph′′|Γdd|p

′p′′〉 − δp,p′〈h
′h′′|Γdd|hp

′′〉 + (p′h′) ↔ (p′′h′′)
}

+
∑

p1

〈ph′′|Γdd|p1p
′′〉〈p1h

′|Γdd|hp
′〉 −

∑

h1

〈ph′|Γdd|h1p
′〉〈h1h

′′|Γdd|hp
′′〉 (B5)

=
1

N
δq,q′+q′′ n̄pn̄p′ n̄p′′nhnh′nh′′ ×

[{
Γ̃dd(q

′′) (δh,h′−δp,p′) + (p′h′) ↔ (p′′h′′)
}

+
1

N
Γ̃dd(q

′′)Γ̃dd(q
′) (n̄h+q′ − nh+q′′)

]
(B6)

where the term originating from triplet correlations has not been spelled out.

Generally, M
(I)
ph,p′p′′h′h′′ is represented by the subset of Mph,p′p′′h′h′′ diagrams that can not

be cut into two pieces, one connected to the labels ph and the other to p′p′′h′h′′, by cutting

either two exchange lines, or cutting the diagram in an internal point. The third row of

Fig. 12 shows such contributions.

M
(I) CA

ph,p′p′′h′h′′ depends non-trivially on three particle and three hole quantum numbers. We

define the localized version as its Fermi sea average, Eq. (4.5),

M̃
(I) CA

q, q′q′′ ≡
1

SF(q)SF(q′)SF(q′′)

1

N

∑

hh′h′′

M
(I) CA

ph,p′p′′h′h′′

= δq,q′+q′′

[[
S(q′)S(q′′)

SF(q′)SF(q′′)
− 1

]
S

(3)
F (q, q′, q′′)

SF(q)SF(q′)SF(q′′)
+

S(q′)S(q′′)

SF(q′)SF(q′′)
ũ3(q, q

′, q′′)

]
.(B7)

Here, the relationship (A4) was used for the connection between Γ̃dd(q) and S(q), and

S
(3)
F (q, q′, q′′) ≡

1

N

∑

h

nhn̄h−q [n̄h+q′ − nh+q′′ ] (B8)

is the three-body static structure function of non-interacting fermions.
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FIG. 12: Diagrams of Mph,p′p′′h′h′′ in the convolution approximation (B3). Graphs obtained by

exchanging the pairs (p′h′) and (p′′h′′) are to be added. The last row shows some diagrams

containing ground state triplet correlations (shaded triangle), all of these contribute to M
(I)
ph,p′p′′h′h′′ .

3. Three-body vertices

We now apply the localization procedure (4.5) to the three-body vertices. Starting with

(3.35), we have

K̃
(q)
q′q′′,0 ≡ N2K

(q)
q′q′′,0 =

1

N SF(q)SF(q′)SF(q′′)

∑

hh′h′′

[
H ′

pp′p′′hh′h′′,0 −
∑

p1h1

H ′
ph p1h1,0M

(I)
p′p′′h′h′′, p1h1

]
.

(B9)

As discussed in Sec. III B, the Euler equations (2.5) for the ground state optimizations ensure

that the Fermi sea average (3.7) of H ′
pp′p′′hh′h′′,0 vanishes. For the matrix elements H ′

php′h′,0
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Eqs. (4.1)-(4.3) yield

H ′
php′h′,0 =

1

2N
δq+q′,0

[
eph + ep′h′ − 2

t(q)

SF(q)

]
Γ̃dd(q). (B10)

Therefore, using (B6) for M
(I)
ph,p′p′′h′h′′

1

N3

∑

hh′h′′

K
(ph)
p′p′′h′h′′,0 = −

1

N3

∑

hh′h′′

∑

p1h1

H ′
ph p1h1,0M

(I)
p′p′′h′h′′,p1h1

= −
1

2N3
Γ̃dd(q)SF(q)

∑

h′h′′h1

(
eh1−q,h1 −

t(q)

SF(q)

)
M

(I)
p′p′′h′h′′,(h1−q)h1

=
δq+q′+q′′,0

N2

~
2

4m
Γ̃dd(q)

[
S(q′)S(q′′)

SF(q′)SF(q′′)
− 1

]

×
[
q2 S

(3)
F (q, q′, q′′) + q · [q′′ SF(q

′) + q′ SF(q
′′)]SF(q)

]
. (B11)

This term vanishes when q and q′ are larger than 2 kF. It is also zero if the matrix element

H ′
ph p1h1,0 in Eq. (B11) is replaced by its Fermi sea average. We therefore expect this term

to be small, in particular since it has no analog in the Bose limit. Note also that triplet

ground state correlations do not contribute to this term. Dividing by the normalization

factors SF(q)SF(q
′)SF(q

′′) leads to the result (4.13).

To calculate a localized version of the vertex Kph,p′p′′h′h′′, Eq. (3.34), we need

K̃q,q′q′′ ≡ N2 Kq,q′q′′ =
1

N SF(q)SF(q′)SF(q′′)

∑

hh′h′′

[
H ′

ph, p′p′′h′h′′ −
∑

p1h1

H ′
ph, p1h1

M
(I)
p1h1, p′p′′h′h′′

]

(B12)

with

H ′
ph,p′h′ = δq , q′

{
δh,h′ eph +

1

2N

[
eph + ep′h′ − 2

t(q)

SF(q)

]
Γ̃dd(q)

}
. (B13)

We first separate the contribution that survives in the boson limit. Starting with the

identity

∑

h′h′′

|Ψp′p′′h′h′′〉 = F
[
ρ̂q′ ρ̂q′′ −

∑

h′

a†h′+q′+q′′ah′ (n̄h′+q′′ − nh′+q′)
]
|Φo〉 (B14)

we have

∑

hh′h”

H ′
ph, p′p′′h′h′′ = 〈Ψo | ρ̂qH

′ρ̂q′ ρ̂q′′ |Ψo〉 −
∑

hh′

(n̄h′+q′′ − nh′+q′)Hph,h′+q h′ . (B15)

Postulating that three-body correlations have been optimized we can simplify the first term

1

2N

〈
Ψo

∣∣∣
[
[ρ̂q, H

′], ρ̂q′ ρ̂q′′

] ∣∣∣ Ψo

〉
= −

~
2

2m
q ·

[
q′′ S(q′) + q′ S(q′′)

]
. (B16)
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For the form (B13), the second term in (B15) is

−
1

N

∑

hh′

Hph, h′+q h′ (n̄h′+q′′ − nh′+q′) =
~

2

2m
q ·

[
q′′ SF(q

′) + q′ SF(q
′′)

]

+
~

2

4m
Γ̃dd(q)

[
q2 S

(3)
F (q, q′, q′′) + q ·

[
q′′ SF(q

′) + q′ SF(q
′′)

]
SF(q)

]
. (B17)

The remaining term of K̃q,q′q′′ in (3.35), −
∑

p1h1
H ′

ph, p1h1
M

(I)
p1h1,p′p′′h′h′′, contains contri-

butions originating from the diagonal and the off-diagonal parts of H ′
ph,p1h1

, Eq. (B13). The

off-diagonal part is identical to the expression (B11), whereas the contribution from the

diagonal term gives

−
1

N

∑

h,h′,h′′

ephM
(I)
ph,p′p′′h′h′′ =

~
2

2m
q ·

[
q′′ SF(q

′) + q′ SF(q
′′)

] [
S(q′)S(q′′)

SF(q′)SF(q′′)
− 1

]

−
~

2q2

2m
S(q′)S(q′′)ũ3(q, q

′, q′′). (B18)

Collecting the individual contributions we obtain Eq. (4.12).

4. Four-body coupling matrix element

In Eq. (3.24) we have defined the irreducible four-body coupling matrix element

M
(I)
pp′hh′,p′′p′′′h′′h′′′. Again, “irreducible” means that in the diagrammatic representation left

and right arguments can not be separated by cutting a particle and a hole line. In analogy

to the Bose case the “convolution” (“uniform limit”) approximation is obtained by retaining

the leading order diagrams

M
(I) CA

pp′hh′,p′′p′′′h′′h′′′ ≡ Mph,p′′h′′ Mp′h′,p′′′h′′′ + Mph,p′′′h′′′ Mp′h′,p′′h′′ . (B19)

This contains all diagrams with up to two correlations. A consistent improvement of the

convolution approximation involves an infinite resummation. For bosons [7] this had only a

marginal effect. We expect a similarly small improvement for fermions.

The approximation for Kpp′hh′,p′′p′′′h′′h′′′ consistent with (B19) is to keep all diagrams

containing only one correlation function Γdd(r),

KCA

pp′hh′,p′′p′′′h′′h′′′ ≡ δp,p′′δh,h′′ ephMp′h′,p′′′h′′′ + δp′,p′′′δh′,h′′′ ep′h′ Mph,p′′h′′

+ {p′′h′′ ↔ p′′′h′′′} . (B20)
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Note that bothM
(I) CA

pp′hh′,p′′p′′′h′′h′′′ andKCA
pp′hh′,p′′p′′′h′′h′′′ contain explicit particle- and hole-labels.

Again, we no longer spell out the superscript “CA” in the following.

A word is in order about the symmetry of both quantities. Eqs. (B19) and (B20) show

that both operators are the sum of two term that differ from each other merely by the

interchanging {p′′h′′ ↔ p′′′h′′′}. We have discussed in connection with Eq. (3.42) that it is

legitimate to replace M
(I)
pp′hh′,p′′p′′′h′′h′′′ and Kpp′hh′,p′′p′′′h′′h′′′ by their asymmetric form.

Appendix C: Pair propagator

1. Pair energy matrix

A priori , Epp′hh′,p′′p′′′h′′h′′′(ω) is a function of four hole and four particle momenta as well

as the energy. In the uniform limit approximation we can, however, express the inverse in

terms of two-body quantities. From (B19) and (B20) we obtain the pair energy matrix

Epp′hh′,p′′p′′′h′′h′′′(ω) = (~ω+iη)Mph,p′′h′′ Mp′h′,p′′′h′′′

− (δp,p′′δh,h′′ eph)Mp′h′,p′′′h′′′ − Mph,p′′h′′ (δp′,p′′′δh′,h′′′ ep′h′) . (C1)

To calculate its inverse, write (C1) as

∑

p1h1p2h2

M−1
ph,p1h1

M−1
p′h′,p2h2

Ep1p2h1h2,p′′p′′′h′′h′′′(ω) = (~ω+iη)δp,p′′δh,h′′ δp′,p′′′δh,h′′′

− (M−1
ph,p′′h′′ ep′′h′′) δp′,p′′′δh,h′′′ − δp,p′′δh,h′′ (M−1

p′h′,p′′′h′′′ ep′′′h′′′) (C2)

Use now, for two commuting operators A,B

[
(~ω+iη) − A − B

]−1

= −

∞∫

−∞

d~ω′

2πi

[
(~ω′+iη) − A

]−1 [
~(ω−ω′+iη) − B

]−1

, (C3)

which can be proved by series expansion. Consequently, we have

E−1
pp′hh′,p′′p′′′h′′h′′′(ω) = −

∞∫

−∞

d~ω′

2πi
κph,p′′h′′(ω′) κp′h′,p′′′h′′′(ω−ω′) (C4)

with

κph,p′h′(ω) ≡ [(~ω+iη)Mph,p′h′ − δpp′δhh′ eph]
−1 . (C5)
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For our choice (4.6) of Mp′h′,ph, we can calculate κph,p′h′(ω) analytically,

κph,p′h′(ω) =
δp,p′δh,h′

~ω − eph + iη
(C6)

−
1

~ω − eph + iη

~ω Γ̃dd(q)/N

1 + ~ω Γ̃dd(q) κ0(q;ω)

1

~ω − ep′h′ + iη
,

where κ0(q;ω) has been defined in Eq. (5.4).

According to Eqs. (3.43) and (4.14), the dynamic parts of the interactions are obtained

from matrix products of E−1
pp′hh′,p′′p′′′h′′h′′′(ω) as given in (C4) with the three-body vertices

(4.12) and (4.13). The latter being local functions, only sums over the hole states enter

V
A,B

(q;ω).

Ẽ−1(q1, q2;ω) ≡
1

N2

∑

h1h2h′

1h′

2

E−1
p1p2h1h2,p′1p′2h′

1h′

2
(ω) = −

∞∫

−∞

d~ω′

2πi
κ(q1;ω

′) κ(q2;ω−ω
′) (C7)

with

κ(q;ω) ≡
1

N

∑

hh′

κph,p′h′(ω) =
κ0(q;ω)

1 + ~ωΓ̃dd(q)κ0(q;ω)
. (C8)

Using Kramers-Kronig relations, we obtain the useful alternative representation

Ẽ−1(q1, q2;ω) =

∞∫

−∞

d(~ω1)d(~ω2)

π2

ℑmκ(q1;ω1)ℑmκ(q2;ω2)

~ω1 + ~ω2 − ~ω − iη
. (C9)

2. Properties of the pair propagator

a. Properties of κ(q;ω)

The structure of κ(q;ω) resembles that of χ(q;ω) in the RPA. It features a particle-hole

continuum κcont(q;ω), and, possibly, a “collective mode” with a dispersion relation given by

1 + κ0(q;ωc(q)) ~ωc(q) Γ̃dd(q) = 0 . (C10)

We can therefore write

ℑmκ(q, ω) = z(q)π δ(~ω − ~ωc(q)) + ℑmκcont(q;ω) ,

z(q) =
κ0(q;ω)

Γ̃dd(q)
d

dω
ωκ0(q;ω)

∣∣∣
ωc(q)

. (C11)
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κ(q, ω) satisfies the following sum rules which we write in the suggestive way

S2(q)

S2
F
(q)

∞∫

0

d(~ω)

π
ℑmκ(q;ω) = −S(q) (C12)

S2(q)

S2
F(q)

∞∫

0

d(~ω)

π
~ω ℑmκ(q;ω) = −t(q) . (C13)

Eq. (C12) is proved by extending the integration to −∞, noting that κ0(q;ω) is real on the

negative ω axis. Since κ0(q;ω) has no poles in the upper complex plane, we can evaluate

the integral along a circle, using the asymptotic expansion

κ0(q;ω→∞) =
SF(q)

~ω
+

t(q)

~2ω2
+ O(~ω)−3 . (C14)

The proof of Eq. (C13) proceeds along the same line, subtracting the asymptotic expansion

of κ(q;ω) beforehand. From Eqs. (C12), (C13) it is clear that the analytic properties of

S2(q) κ(q;ω)/S2
F(q) are similar to those of the density-density response function χRPA(q;ω).

For bosons, the two functions coincide exactly: Identifying Γ̃dd(q) = S(q)−1 and SF(q)=1,

κ0(q;ω) consists of a single mode, so that

κ0(q;ω) =
1

~ω+iη − t(q)
, κ(q;ω) =

1

S(q)

1

~ω+iη − ε(q)
. (C15)

Figure 13 further confirms this similarity for 3He at saturation density. Expectedly, a

solution of Eq. (C10) is found to lie within a few percent of the RPA zero sound mode.

b. Properties of Ẽ−1(q, q′;ω)

Equations (C12) and (C13) lead to the sum rules for the pair propagator,

∞∫

−∞

d(~ω)

π
ℑmE−1(q, q′;ω) = −

S2
F (q)

S(q)

S2
F (q′)

S(q′)
. (C16)

∞∫

−∞

d(~ω)

π
~ω ℑmE−1(q, q′;ω) = −

S2
F (q)

S(q)

S2
F (q′)

S(q′)
(ε(q) + ε(q′)) . (C17)

The proof of (C16) is best carried out starting from the representation (C9),

∞∫

0

d(~ω)

π
ℑmE−1(q1, q2;ω) = −

∞∫

0

d~ω1

π
ℑmκ(q1;ω1)

∞∫

0

d(~ω)

π
ℑmκ(q2;ω − ω1) .(C18)
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FIG. 13: Imaginary part of the scaled propagator S2(q)κ(q, ω)/S2
F (q) (left) and of χRPA(q, ω)

(right) at the density ρ = 0.0166 Å−3. The black squares show, for reference, the Feynman disper-

sion relation ε(q).

The ~ω integral in the last term can be extended to −∞ since ℑmκ(q;ω) is real on the

negative ω-axis.

If Eq. (C10) has a solution, the pair propagator has a collective mode. From (C11) we

obtain

ℑmẼ−1(q1, q2;ω) = π z(q1) z(q2) δ(~ωc(q1) + ~ωc(q2) − ~ω) . (C19)

This is the origin of two-phonon excitations, or the double-plasmon in charged systems.

The two-particle-two-hole band consists of three parts which may overlap. The first one

is the continuum–continuum (c-c) coupling, where the contribution of each κ(q, ω) in (C7)

comes from its particle hole band. This defines the two-particle-two-hole “tube” in (q, q′;ω)

space. Its boundaries are

emin(q) + emin(q
′) ≤ ~ω ≤ emax(q) + emax(q

′) , (C20)

where emin and emax denote the upper and lower border of each single-particle-hole band,

respectively.

The other two parts of E−1(q, q′;ω) arise from continuum–mode (c-m) coupling, they are

identical apart from interchanging q and q′. Their boundaries are

emin(q) + ~ωcm(q′) ≤ ~ω ≤ emax(q) + ~ωcm(q′) . (C21)
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Finally, we consider three limits of the pair propagator. First, in the non-interacting case,

Γ̃dd(q) = 0, we simply obtain a sum over two-pair energy denominators

Ẽ−1
F (q, q′;ω) = −

∫
d~ω′

2πi
κ0(q

′;ω − ω′)κ0(q;ω
′) =

1

N2

∑

hh′

1

~ω+iη − eph − ep′h′

, (C22)

i.e. the two-particle energy denominator appropriate for perturbation theory in a weakly

interacting Fermi system.

Second, (C15) reproduces the energy denominator appearing in the boson theory,

Ẽ−1
bos(q, q

′;ω) =
1

S(q)S(q′)

1

ε(q) + ε(q′) − ~ω−iη
. (C23)

Finally, we consider the “collective” or “uniform limit” approximation. Following (A6)

we replace κ0(q;ω) by that single-pole approximation which ensures its correct ω0 and ω1

sum rules. This gives

κCA

0 (q;ω) =
SF(q)

~ω+iη − t(q)/SF(q)
, (C24)

κCA(q;ω) =
S2

F
(q)

S(q)

1

~ω+iη − ε(q)
, (C25)

and

E−1
CA (q, q′;ω) =

S2
F (q)

S(q)

S2
F (q′)

S(q′)

1

ε(q) + ε(q′) − ~ω−iη
. (C26)

The boson limit as well as the collective approximation demonstrate the effect of cor-

relations: The single-particle energies get shifted and form a band around the “Feynman-

spectrum”. Note that the collective approximation satisfies the sum rules (C16)-(C17) ex-

actly.

c. Pair propagator for charged systems

For charged systems, the dispersion of the solution of Eq. (C10) has, unlike the plasmon,

a term that is linear in the wave number:

~ωc(q) = ωp +
tF
6

q

kF

−
9t2F

4~ωp

(
q

kF

)2

+ O(q3) . (C27)

For the strength of this mode we obtain

z(q, ωc(q)) =
9~ωp

16tF
−

3

32

q

kF
. (C28)
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Hence, to leading order, for the pole of E−1(q1, q2;ω) in (C19) we obtain

ℑmẼ−1(q′, q′;ω) = −π

(
9

16

~ωp

tF
−

3

32

q′

kF

)2

δ

(
~ω − 2~ωp −

tF
3

q′

kF

)
as q′ → 0. (C29)

Note that the location of double-plasmon pole contains, in leading order in the momentum

transfer, no information on many-body correlations.

Appendix D: Large momentum limit

For large momenta, S(q)−1 falls off at least as q−4. The vertices (4.12) and (4.13) fall

off as q−1 and as q−2, respectively, hence we have

K̃q,q′q′′ ≈
S(q′)S(q′′)

SF(q′)SF(q′′)

~
2

2m

[
q · q′ X̃dd(q

′) + q · q′′ X̃dd(q
′′)

]
, (D1)

K̃
(q)
q′q′′,0 ≈ 0 .

As a consequence, W̃
B
(q; 0) is negligible for large momenta, and only the first term in

Eq. (4.17)) contributes to W̃
A
(q; 0).

For large q either q′ or q′′ (or both) must be large. (let q′′≥q′, the symmetry in q′ ↔ q′′

just yielding a factor of two). Since X̃dd(q) falls off for large q, the dominant contribution

of (D1) then arises from small q′ and we can write

W̃A(q → ∞, 0) =

(
~

2

2m

)2
1

N

∑

q′

(
S(q′)

SF(q′)

)2 [
q · q′ X̃dd(q

′)
]2

Ẽ−1(q′, q′′; 0)

=
t(q)

3

1

N

∑

q′

t(q′)

[
S(q′)

SF(q′)
X̃dd(q

′)

]2

Ẽ−1(q′, q; 0) . (D2)

We now use the representation (C7) for the pair propagator

Ẽ−1(q′, q; 0) = −

∞∫

−∞

d~ω′

π
ℜe κ(q′, ω′)ℑmκ(q,−ω′) . (D3)

Since κ0(q≫kF;ω) = 1/(~ω − t(q) + iη) we have

κ(q→∞;ω) =
1

S(q)

1

~ω − ε(q) + iη
. (D4)

Consequently,

Ẽ−1(q′, q→∞; 0) =
1

S(q)
ℜe κ(q′,−1

~
ε(q))

= −
1

t(q)

SF
2(q′)

S(q′)
, (D5)
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where the last equality follows from the high-frequency limit κ0(q′;ω) → SF(q
′)/ω. Insertion

into (D2) yields

W̃A(q → ∞, 0) = −
1

3N

∑

q′

t(q′)S(q′)
[
X̃dd(q

′)
]2

, (D6)

which together with Eq. (A12) gives the result (5.14).

Appendix E: Sum rules

For bosons, the ω0 and ω1 sum rules (1.4) and (1.5) are satisfied exactly [16] in the

sense that the result of the frequency integration is independent of the level at which pair

fluctuations are treated. This feature provides an unambiguous method to determine the

static particle-hole interaction Ṽp h̄(q) through the sum rule (1.4) from the static structure

function.

The proof of the m1 sum rule is identical to the one for bosons: Due to the symmetry

χ(q;ω) = χ∗(q,−ω)

we can write

m1 = −
1

2π
ℑm

∫ ∞

−∞

d(~ω) ~ωχ(q;ω) . (E1)

All poles of χ(q;ω) are in the lower half plane, allowing to close the integral in the upper

half plane. For large ω we have, however,

χ0(q;ω) − χRPA(q;ω) ∝ ω−4 χ0(q;ω) − χ(q;ω) ∝ ω−4 (E2)

since

ṼA,B(q;ω) = Ṽph(q) +
const.

ω
as ω → ∞. (E3)

We have therefore

ℑm

∫ ∞

−∞

d(~ω) ~ωχ(q;ω) = ℑm

∫ ∞

−∞

d(~ω) ~ωχRPA(q;ω) = ℑm

∫ ∞

−∞

d(~ω) ~ω χ(q;ω) .

(E4)

For fermions, the frequency integration in (1.4) must be carried out numerically, which

is best done by Wick rotation along the imaginary axis. The result of the integration is no

longer rigorously independent of the approximation used for the response function.

Fig. 14 compares the m0 sum rule calculated within the RPA and the pair excitation

theory. Evidently, the discrepancy is very small. One can understand by comparing with the
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FIG. 14: Result of the m0 sum rule for 3He at saturated vapor pressure. The purple dashed line

shows the FHNC S(q) and the blue short dashed line the result from the pair fluctuation theory;

the dashed green line shows the difference, magnified by a factor of 30 to make it visible.

boson theory: If we restricted the fluctuation operators δu
(1)
ph (t) and δu

(2)
pp′hh′(t) to be functions

of momentum transfers q = p−h and q′ = p′ −h′, we would end up with a density-density

response function that is formally identical to that of bosons and would, hence, lead to an

S(q) that is independent of the treatment of the pair fluctuations. The expectation that

the inclusion of the particle-hole structure of the two-pair energy denominator makes only a

small difference is verified in Fig. 14. Thus, it is also legitimate in the pair-excitation theory

to obtain the static particle-hole interaction Ṽp−h(q) from the static structure function S(q)

through Eqs. (1.4) and (1.7).

Appendix F: Implementation Recipe

This section provides, for the convenience of the reader and easy further reference, a

compilation of all necessary ingredients to implement the theory. Mostly a summary of

sections IV and VA, we deliberately refrain from any explanation to avoid redundancy and

keep it as compact as possible.

We have shown in our applications to 3He and the electron liquid that for practical
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purposes, only one of the local three-body vertices is necessary:

K̃q,q′q′′ =
~

2

2m

S(q′)S(q′′)

SF(q)SF(q′)SF(q′′)

[
q· q′ X̃dd(q

′) + q· q′′ X̃dd(q
′′) − q2ũ3(q, q

′, q′′)
]
, (F1)

where u3(q, q
′, q′′) is the three-body ground state correlation [28]. The effective interaction

W̃
A
(q, ω) is then

W̃
A
(q;ω) =

1

2N

∑

q′

|K̃q,q′q′′|
2 Ẽ−1(q′, q′′;ω) (F2)

whereas W̃
B
(q, ω) vanishes. Consequently, the components of the (energy–dependent) inter-

action matrix Vp−h(ω) are

Ṽ
A
(q;ω) = Ṽp−h(q) + [σ+

q ]2 W̃
A
(q;ω) + [σ−

q ]2 W̃ ∗
A

(q;−ω) , (F3)

Ṽ
B
(q;ω) = Ṽp−h(q) + σ+

q σ
−
q

(
W̃

A
(q;ω) + W̃ ∗

A
(q;−ω)

)
, (F4)

with σ±
q ≡ [SF(q) ± S(q)]/2S(q).

Finally we need the pair propagator:

Ẽ−1(q1, q2;ω) = −

∞∫

−∞

d~ω′

2πi
κ(q1;ω

′) κ(q2;ω−ω
′) (F5)

κ(q;ω) =
κ0(q;ω)

1 + ~ωΓ̃dd(q)κ0(q;ω)
(F6)

with the partial Lindhard functions:

κ0(q;ω) ≡
1

N

∑

h

n̄pnh

~ω − eph + iη
(F7)

The simplifications of the interactions do not significantly simplify the form (5.6) of the

density-density response function.
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Abstract The ground state of strongly interacting Fermi fluids, specifically 3He,
is well understood, using either simulation or correlated basis function techniques.
However, the manifestly microscopic determination of the dynamics of such systems
still poses a number of open problems. One of these is the importance of exchange
effects in the density channel. The subject of this work is to clarify this question.

We demonstrate here that exchange effects are, even in the density channel, not
negligible. The main consequence is a lowering of the collective mode toward the
particle-hole continuum in agreement with recent measurements on 3He. In the ex-
periment also a strong damping of the collective mode is observed. Our results show
that we should, by including self-energy corrections and multipair-fluctuations, be
able to determine conclusively the many-particle aspects of that effect.

Keywords Fermi fluid · Linear response · Exchange · Helium 3

PACS 67.30.Em · 67.10.Db

1 Introduction

A popular paradigm for discussing the dynamics of Fermi fluids is the random phase
approximation (RPA). The approach implies a number of crucial approximations.
These are

(i) The strong, bare interaction has to be replaced by a static, weak, effective inter-
action. This can be done phenomenologically as in the Aldrich-Pines pseudopo-
tential model [1], or from microscopic many-body theory [2].
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(ii) The excited states are described in a space restricted to “one-particle-one-hole”
excitations of the ground state, and

(iii) Exchange effects are neglected. Since the importance of exchange effects for the
ground state is well established, such an approximation can be argued only by
computational convenience.

The first two assumptions are indeed related, a theory that includes multi-pair-
excitations can be re-formulated in terms of a “one-particle-one-hole” excitation the-
ory with a dynamic, energy dependent effective interaction. The fact that such an
effective interaction must be dynamic has been known, for 4He, since the sixties [3],
and there is no reason that effects that are dramatic in 4He should be negligible in
3He.

In this contribution we concentrate on the other important simplification of the
RPA, namely the omission of exchange terms. When exchange effects are included,
the appropriate language is the time-dependent (correlated) Hartree-Fock theory
[4, 5]. Correlated Basis Functions (CBF) theory provides an unambiguous method
for calculating an effective interaction in the exchange channel [2]. This approach is
robust in the sense that it can, without modifications, also be applied to other system
such as nuclear matter [6] or electrons [7].

2 Formalism

The starting point of the time-dependent CBF theory [2, 5] is the ansatz for the dy-
namic wave function

|Ψ (t)〉 = 1

N e−iE0t/�F exp

{
1

2

∑
ph

uph(t)a
†
pah

} ∣∣Φ0
〉
, (1)

where |Φ0〉 is a Slater determinant of single-particle orbitals, which are plane waves
for an infinite homogeneous system. F is a Jastrow correlation factor, E0 the ground
state energy and N the normalization integral. The p- and h-indices denote particle
and hole states, respectively and uph(t) are called “particle–hole excitation ampli-
tudes”. These amplitudes are determined by the stationarity principle [8]

δ

∫
dt L(t) = δ

∫
dt

〈
Ψ (t)

∣∣H + Hext − i�
∂

∂t

∣∣Ψ (t)
〉
, (2)

where H is the many body Hamiltonian and Hext a scalar external perturbation. The
algebraic manipulations to turn the equations of motion following from the station-
arity principle (2) into a form that is suitable for numerical analysis are somewhat
tedious since they involve the diagrammatic analysis of effective interactions of CBF
theory. It suffices here to state that the above effective interactions are obtainable
from the ground state theory.

The density response equations are formally solved by the “supermatrix” equa-
tion [2]

χ(q,ω) = (
ρph,0 ρ0,ph

) [
Ω + Vp−h(ω)

]−1
(

ρph,0
ρ0,ph

)
, (3)
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where ρ0,ph = 〈Φ0| ρ̂a
†
pah |Φ0〉 are the matrix elements of the density operator ρ̂.

Further we have introduced

Ω =
(

eph − �ω − iη 0
0 eph + �ω + iη

)
(4)

with the particle hole energy difference eph predicted by CBF theory [2]. It is essen-
tial to include the full CBF spectrum together with the exchange diagrams, whereas a
free spectrum is normally used in conventional RPA. The interaction matrix is defined
as

Vp−h(ω) =
(

V A
ph,p′h′ V B

pp′hh′,0
V B

0,pp′hh′ V A
p′h′,ph

)
(5)

with

V A
ph,p′h′ = 〈

ph′∣∣V A
p−h

∣∣hp′〉 − 〈
ph′∣∣V A

X

∣∣p′h
〉

(6)

and

V B
pp′hh′,0 = 〈

pp′∣∣V B
p−h

∣∣hh′〉 − 〈
pp′∣∣V B

X

∣∣h′h
〉
. (7)

All interactions can, in principle, be energy dependent, see Ref. [9]. In the present
implementation of the theory, which is restricted to correlated one-particle-one-hole
fluctuations, they are energy independent.

A few words are in order concerning the interpretation of these effective inter-
actions. Both, the “direct” interactions V

A,B
p−h and the “exchange” interactions V

A,B
X

are normally non-local and different. The “direct” interactions V
A,B
p−h are, in the lan-

guage of the diagrammatic analysis of Jastrow-Feenberg theory, represented by “non-
nodal” diagrams. In the language of diagrammatic perturbation theory, these corre-
spond to “particle-hole irreducible” diagrams. The exchange interactions, on the other
hand, V A,B

X contain nodal diagrams which correspond to “particle-hole reducible” di-
agrams.

In the present study we have only kept the dominant, local parts of the interactions.
These are the same in the “A” and the “B” channel, they are shown in Fig. 1. Their
features show the qualitative effects discussed by Aldrich and Pines [10], namely

– Short-ranged screening. This is just the purpose of using correlated wave functions.
– A repulsive core or barrier that is somewhat larger than the repulsive core of the

bare potential. This enhanced core repulsion is due to the fact that the wave func-
tion has to go to zero at the hard core. The “curvature” of the wave function leads
to increased repulsion.

– An attractive part that is slightly stronger than the attraction of the bare potential.
This is due to the fact that the effective potential, being a pure pair quantity, must
effectively simulate the presence of the other particles.

– The “exchange” interaction VX(r) shows a slight over-screening. This is due to
“single-phonon exchanges” which are present in the exchange interaction but not
in the direct interaction.
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Fig. 1 The figure shows a
comparison between the bare
Aziz potential [11] (solid line),
the local “direct” particle hole
interaction (long-dashed line)
and the local exchange
interaction (short-dashed line)

In the simplest possible approximation, one also neglects exchange effects. In that
case, one can indeed identify V A

p−h ≡ V B
p−h ≡ Vp−h with a local “particle–hole in-

teraction” in the sense of the RPA. One can then derive a density-density response
function in the usual RPA form

χ(RPA)(q,ω) = χ0(q,ω)

1 − Vp−h(q)χ0(q,ω)
, (8)

where χ0(q,ω) is the Lindhard function. However, even if exchange terms are omit-
ted, but the effective interactions are different in the “A” and the “B” channels, such
a form can not be justified.

3 Results

We have applied the theory formulated above to bulk 3He at saturated vapor pres-
sure and zero temperature. The results are compared with the experiments of Glyde
et al. [12] and Fåk et al. [13]. As pointed out in an accompanying paper [9], pair
excitations also play a crucial role in the dynamics, the present results are therefore
meant to illustrate the importance of exchange effects. In Fig. 2 we compare the re-
sult of our theory with the RPA and the experiment for different wave-numbers. For
collective modes, which correspond to δ-functions, the result of the theoretical cal-
culations have been artificially broadened. We here define “RPA” as follows: Assume
a density–density response function of the form (8). Then define the particle–hole
interaction Vp−h(q) through the m0 sum rule

S(q) = −
∫ ∞

0

d(�ω)

π
�mχ(RPA)(q,ω). (9)

We start with low values q = 0.4 Å−1 and q = 0.6 Å−1. At these small wave
numbers, multipair excitations are expected to be negligible [3, 14]; and a theory
based on one-particle-one-hole excitations should be adequate. Indeed, the theoreti-
cally predicted energy of the collective mode agrees quite well with the experimental
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Fig. 2 (Color online) Comparison of our theory (red, solid line) with RPA (green, dashed) and experiment
(blue, short dashed) at wave-numbers q =0.4, 0.6, 0.8 and 1.0 Å−1. The experimental data are from Glyde
et al. [12] (plots (a)–(c)) and Fåk et al. [13] (plot (d))

one, whereas the RPA predicts the collective mode at a significantly higher energy.
This effect is expected: At long wave lengths, the collective mode is basically deter-
mined by the speed of sound, and exchange contributions are for the speed of sound
just as important as for the ground state energetics.

At higher momentum transfers q = 0.8 A−1 and q = 1.0 Å−1 the agreement be-
tween theory and experiment is expectedly less satisfactory. When the wave length of
the excitation becomes comparable to the interparticle distance, multi-particle fluctu-
ations that describe fluctuations on this scale become important. This is well known
from 4He [3] and there is no reason that the effect should not be similarly important
in 3He. In fact, an accompanying paper [9] demonstrates precisely this fact. Another
reason for the discrepancy is the naïve assumption of a static CBF spectrum. This
spectrum could be fitted by introducing an effective mass m∗ = 0.87m whereas spe-
cific heat measurements suggest an effective mass of approximately m∗ ≈ 3m. The
discrepancy has been reconciled by more realistic calculations of the 3He self en-
ergy [15]. To include such effects one must, however, also include dynamic exchange
effects which will be the topic of future work.

We have seen in this work that exchange effects are indeed quite visible in the
dynamics of 3He. In particular, they lead to a lowering of the collective mode at
low momentum transfers, which is often attributed to a downward shift of the single-
particle spectrum by self-energy corrections. While we have in this work not included
self-energy corrections of the kind discussed in Ref. [15], we do, at this point, of
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course not claim that these corrections are negligible. Work in this direction is in
progress.
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