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2European Theoretical Spectroscopy Facility (ETSF)
3Synchrotron SOLEIL, L’Orme des Merisiers, Saint-Aubin, BP 48, F-91192 Gif-sur-Yvette, France

(Received 25 July 2017; revised manuscript received 15 February 2018; published 20 April 2018)

The charge-density response of extended materials is usually dominated by the collective oscillation of
electrons, the plasmons. Beyond this feature, however, intriguing many-body effects are observed. They
cannot be described by one of the most widely used approaches for the calculation of dielectric functions,
which is time-dependent density functional theory (TDDFT) in the adiabatic local density approximation
(ALDA). Here, we propose an approximation to the TDDFT exchange-correlation kernel which is
nonadiabatic and nonlocal. It is extracted from correlated calculations in the homogeneous electron gas,
where we have tabulated it for a wide range of wave vectors and frequencies. A simple mean density
approximation allows one to use it in inhomogeneous materials where the density varies on a scale of 1.6 rs
or faster. This kernel contains effects that are completely absent in the ALDA; in particular, it correctly
describes the double plasmon in the dynamic structure factor of sodium, and it shows the characteristic low-
energy peak that appears in systems with low electronic density. It also leads to an overall quantitative
improvement of spectra.
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The response to an external perturbation is an important
tool to probe materials, and spectroscopic experiments play
a crucial role [1]. Response properties are also of interest
for applications: examples are the linear response to
photons, which governs optical properties and, hence,
the color of materials and their capability to absorb the
sunlight, or the response to a beam of fast charges, which
determines the stopping power [2]. A first attempt to
interpret experimental findings or to predict response
properties is based on the band structure, in an indepen-
dent-particle picture. However, collective effects and sig-
natures of strong correlation influence and sometimes even
dominate electronic spectra, making their calculation a
formidable intellectual challenge and a crucial tool for
technological applications. In optical absorption spectra,
the Coulomb interaction can lead to bound electron-hole
pairs that create sharp excitonic peaks in the fundamental
gap [3]. Other important spectroscopic quantities are the
loss function and the dynamic structure factor as measured
in electron energy loss spectroscopy or inelastic x-ray
scattering (IXS) [1]; for example, the loss function exhibits
the plasmon excitations and is, therefore, a key ingredient
for plasmonics [4]. It is also crucial for theory, since the
density-density response function enters the calculation of
the correlation energy in the adiabatic connection formula
[5,6], and it is one of the main building blocks of many-
body perturbation theory [7].
At first sight, spectra are often dominated by classical

electrostatic (Hartree) effects for which the random phase

approximation (RPA) is sufficient to capture the essential
trends [1]. Beyond the RPA, the adiabatic local density
approximation (ALDA) to time-dependent density func-
tional theory (TDDFT) yields, in general, a small quanti-
tative improvement [8]. However, often, the resulting rough
overall agreement is not sufficient for today’s needs. Details
of the loss function are responsible for the shape of the
satellite spectra in photoemission and, therefore, transmit
precious information, for example, about doping [9].
Especially in correlated materials, even weak low-energy
structures can dramatically influence materials properties
[10]. Loss spectra can exhibit many-body effects such as
lifetime broadening [11,12] or double-plasmon excitations
[13,14], and in the low-density regime, the spectral shape
can be very different from the naively expected single
plasmon peak, even in the homogeneous electron gas
(HEG) [15]. To capture those intriguing effects, one has
to go beyond the RPA and ALDA. Many advanced density
functionals have been developed which can be directly
applied to real materials; some of them are nonlocal
[16–18], others are nonadiabatic [19–21]. However, most
of them are meant to improve just one of the shortcomings
of the ALDA; for example, long-range corrected func-
tionals are often adiabatic [22–25]. On the other side, more
advanced calculations in the TDDFT framework exist in the
HEG [15,26–29] but without an indication of how to use
them in a real material. Interestingly, even beyond density
functionals, nonadiabatic effects are difficult to capture; in
particular, the widely used Bethe-Salpeter equation within
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many-body perturbation Green’s function theory is usually
applied in an adiabatic approximation [3].
The aim of the present work is to close this gap by

introducing a general strategy: in the spirit of ground-state
density functionals, such as the LDA [30], our strategy
consists of two parts: first, an advanced calculation in the
HEG, and second, a “connector,” namely, a prescription of
how to use the result in real materials. The enormous
advantage of such a procedure is that the advanced
calculation is done only once and forever; indeed, our
HEG results are freely available [31]. By using the very
simple connector proposed in this work, results for real
materials are then obtained with a computational effort that
is similar to the RPA. They show features that are extremely
difficult to obtain otherwise, in particular, double-plasmon
excitations and the double-peak structure which character-
ize strong correlation in the low-density regime.
For an illustration, we concentrate on sodium as a

prototype material. Fig. 1 shows experimental [40,41]
and various theoretical results for a moderate momentum
transfer. In agreement with literature [40,41], the RPA
dynamic structure factor exhibits one plasmon peak that is
blue shifted with respect to experiment. The ALDA moves
spectral weight to lower energies. However, compared to
experiment, the plasmon energy is still too large, and the
peak is too asymmetric. Moreover, the double plasmon,
which is clearly visible in experiment around 12 eV, is
completely absent. In order to improve the spectral shape,
one can, ad hoc, add quasiparticle lifetime corrections

[40,41], but even this empirical procedure cannot yield the
double plasmon. The latter has been calculated diagram-
matically in the HEG by Sturm and Gusarov [42], and
qualitative agreement with experiment was found [13]. A
finer comparison is hindered by the fact that, even in
sodium, the effects of the crystal are not negligible: Fig. 1
shows that the ALDA result for the HEG is significantly
different from the ALDA in sodium. In order to distinguish
effects of the crystal from the description of many-body
effects, let us first look at the HEG.
The first task is to calculate the density-density response

function χðq;ω; nÞ, which is a function of wave vector q,
frequency ω, and the homogeneous density n, on a level
of theory that includes correlations and the explicit cou-
pling of excitations sufficiently well. A suitable starting
point is the correlated equations of motion approach of
Böhm et al. [43]. It relies on a Jastrow correlated ground
state jψ0i ¼ Fjϕ0i=N , where ϕ0 is a Hartree-Fock ground
state and N is the normalization. F is the correlation
operator. When restricting it to two particle correlations, it

reads F ¼ e
1
2

P
i<j

uðri−rjÞ. The correlation functions u are
found by minimization of the energy. Excited states are
described by neutral excitations of jϕ0i, while F is kept
constant. In this work, single particle hole and two-particle
two-hole (2p2h) excitations are included. These excitations
are optimized by employing the least-action principle. For
the calculation of χ, we need matrix elements involving the
correlated excited states. This is done within the correlated
basis functions formalism [44,45]. The static structure
function SðqÞ appears as a fundamental ingredient in the
result, while the explicit knowledge of u is not needed.
Therefore, we can profit from Monte Carlo (MC) calcu-
lations, which yield SðqÞ with high precision [46], whereas
in general, they do not access spectra. Compared to the
original work [43], here, we use a more complete descrip-
tion of the pair propagator, which improves the quality of
the result but which is not crucial for the main purpose of
this Letter. The improved method, which we denote 2p2h,
is described in detail in Ref. [47].
Figure 2 shows typical χðq;ω; nÞ for q ¼ 2.2kF (where

kF is the Fermi wave vector) and n corresponding to rs ¼ 8.
The RPA shows a broad and featureless plasmon excitation
around 5.5 eV. This can be compared to the more realistic
result of Takada [15], which has been obtained with an
improved version of the Richardson-Ashcroft exchange-
correlation kernel [29]. This kernel, which satisfies many
exact conditions, is wave vector and frequency dependent.
However, it has been derived for imaginary frequencies,
and while it yields significant improvement in correcting
RPA correlation energies [48], its performance for spec-
troscopy is less obvious. Thus, we expect that the observed
corrections with respect to the RPA are relevant, while there
may still be small deviations from the (unknown) exact
spectrum. In any case, today, Takada’s result probably
represents the best available benchmark. It is remarkably
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FIG. 1. The dynamic structure factor of sodium at
q ¼ 0.531=a0: experimental IXS results of Ref. [40] (red crosses)
and different levels of theory for theHEGat rs ¼ 4, namelyALDA
(thin dashed green curve) and 2p2h (thin yellow solid curve) and
for the real material, namely RPA (purple short-dashed curve),
ALDA (green dashed curve) and 2p2h (yellow solid curve). Inset:
zoom on the double plasmon, in particular 2p2h (yellow curve)
with (solid curve) and without (dotted-dashed curve) Gaussian
broadening. Arrow: energy of the double plasmon in Ref. [13].
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different from the RPA: there is a strong shift of spectral
weight to lower energies, and a double peak structure
appears.
The shift of spectral weight is at the origin of the

so-called “ghost plasmon” (called “ghost exciton” in
Ref. [15]), which has been introduced by Takayanagi
and Lipparini [49] as a pole of the irreducible polarizability
on the imaginary axis. It manifests itself through a negative
static dielectric function, hence, an attractive screened
Coulomb interaction. Such a feature is always absent in
the RPA, whereas interestingly, it is present in the ALDA,
which, indeed, leads to a strong redshift of spectral weight.
Since, for ω ¼ 0 and q → 0, the ALDA approaches the MC
result, the onset density for the appearance of the ghost
plasmon is the same in both cases. However, the ALDA
does not create this effect in the correct way, since there is
an overall shift rather than the appearance of an additional
low-energy mode. Our 2p2h results, instead, yield results
that are close to Takada’s results in both respects: the shift
of oscillator strength, and a (in our result, slightly more
intense) distinct low-energy mode, which is to a large
extent responsible for the appearance of the ghost plasmon.
From an extrapolation of his results up to rs ¼ 22, Takada
concludes that it falls always inside the single-pair exci-
tation region. Note that, in 2D 3He, the same low-energy
mode has been found below the particle-hole continuum,
both theoretically, with the approach used here, and
experimentally [50]. Since low-energy modes play an
important role in the spectroscopy of correlated systems,
the fact that our approach is able to reproduce this
phenomenon is an important point.
Another feature of interest is the double plasmon, which

can, by definition, only be obtained with a nonadiabatic

functional. The result of our HEG 2p2h calculations,
performed at the density of sodium (rs ¼ 4) and at a wave
vector of q ¼ 0.53=a0, is shown in Fig. 1. With respect to
the RPA, there is a visible enhancement of oscillator
strength in the region of interest with a structure around
12.8 eV, which can be attributed to the double plasmon.
This is close to the experimental results of Huotari et al.
[14] at 12.8 eV, or more recent results [40,41] which
suggest 12.5 eV (see inset in Fig. 1). To say more about the
significance of this result, in view of the non-negligible
differences between sodium and the HEG, we have to move
closer to the real system, for which none of the advanced
approaches has yet been applied.
Our strategy takes advantage of the Dyson-like linear

response equation for χ, which for the HEG can be written
in inverse form as

fhomxc ðq;ω; nÞ ¼ 1

χ0ðq;ω; nÞ
−

1

χðq;ω; nÞ − vcðqÞ: ð1Þ

Here, vc is the Coulomb interaction. The Lindhard func-
tion χ0 contains the information about the noninteracting
system, whereas the exchange-correlation kernel fhomxc
describes interaction effects. Of course, it also depends
on the system; i.e., in the case of the HEG fhomxc is a function
of the density. Still, focusing on fxc, instead of the full χ,
allows us to separate materials and interaction effects to a
significant extent. Therefore, using the 2p2h results for χ,
we calculate fhomxc for densities ranging from rs ¼ 1 to
rs ¼ 6 according to Eq. (1). Only the q → 0 limit is delicate
because of lack of precision in the fitting procedure of the
MC data. The easiest solution is to correct this limit using
the static fCODPxc ðqÞ of Corradini et al. (COPD) [17], which
should be close to exact in the static limit.
The resulting table of 2p2h fhomxc [31] has now to be used

in the real systems: we have to devise the connector. In the
case of ground-state calculations, the canonical choice for
the exchange-correlation potential vxcðrÞ½n� is the LDA,
based on the nearsightedness principle [51]. Extensions
based on some suitable density average around the local
point r have also been proposed by Gunnarsson et al.
[52,53]. These authors also provide a length scale for the
size of the region over which one should take the average,
which is about 2 kF in reciprocal space. In real space, this
corresponds approximately to a radius of 1.6 rs. The kernel
fxcðr; r0;ωÞ, however, is nonlocal and at least two regions
(around r and around r0) should give important contribu-
tions. Moreover, in the excited states the nearsightedness
principle does not apply. This means that the estimate of
1.6 rs is a lower bound for the region over which one
should average, and the pertinent area will, in general, be
significantly larger. If it exceeds the scale of the density
variation in the system, the canonical approximation should
be to take the mean density n̄ of the system, rather than a
local density. In practice, this means that, in the real system,
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one has to solve the Dyson equation for χ using the
inhomogeneous χ0 and fhomxc calculated at the mean density
n̄ of the real system: this is the time-dependent mean
density approximation (TDMDA). Such an approximation
is similar in spirit to the fxcðq → 0;ωÞ that was derived
for the case of small inhomogeneities in [21]. Our argu-
ments point to the fact that it should be valid even when
the amplitude of the density variations is large, provided
that its real space oscillations are rapid enough. Difficulties
should appear whenever off-diagonal elements of fxc
become important, e.g., for optical spectra [54]. Consi-
dering the interatomic distances in Na with 1.75 rs and in Si
with 2.2 rs for valence electrons, the TDMDA is well
justified for describing the dynamic structure factor in both
systems. Therefore, it is applicable in a wider range
than previously thought [8,55]. In [32], we illustrate the
validity of these arguments by calculations on a 1D model
system [56].
In order to get a feeling for whether the choice between

the local and the mean density is very delicate, we have
calculated spectra for several systems using either the
ALDA or the adiabatic mean density approximation
(AMDA), which imports from the HEG the same static
and local δðr − r0Þfhomxc ðq → 0;ω ¼ 0Þ as does the ALDA,
but at the mean, instead of the local, density. In both cases,
χ0 has been calculated using the LDA. For sodium (not
shown), the spectra are on top of each other, which is not
surprising. More interesting is silicon: it turns out that
ALDA and AMDA are still very close, as can be seen in
Fig. 3. If there is any difference, the tendency is rather in
favor of the AMDA. Although this is merely a snapshot of
the local and adiabatic case, it gives evidence that the
TDMDA is, at least, a reasonable approximation, and we
will adopt it in the following.

With the TDMDA, any sophisticated interpolated or
tabulated HEG kernel whatsoever is easy to import and to
use in real systems, including nonadiabatic ones. This
allows us to calculate sodium again, now using our 2p2h
kernel. For the ground-state calculation leading to χ0, we
again adopt the LDA. The mean density used in fxc is that
of the valence electrons, which are well separated from the
core electrons. The result for q ¼ 0.532a−10 is given in
Fig. 1. The difference with respect to the 2p2h homo-
geneous result is mainly a significant redshift of the main
plasmon. Of all the approximations shown, the 2p2h-
TDMDA result has the best agreement with experiment.
Since the double plasmon is only accessible by a fre-
quency-dependent kernel, it merits particular attention;
therefore, the inset in Fig. 1 shows a zoom. The double
plasmon contribution is clearly visible in the experiment
and the theory, especially when we remove the Gaussian
broadening. The theoretical position is close to the homo-
geneous result and to experiment, and improves over the
pioneering result of Sturm and Gusarov [13] by more
than 1 eV.
In order to also probe the impact of the wave vector-

dependence of the 2p2h-TDMDA kernel, Fig. 4 shows
results for a larger wave vector, q ¼ 1.161=a0. The 2p2h-
TDMDA result is, again, better than the ALDA. In
particular, it includes some lifetime damping. More results
and discussions can be found in Ref. [47].
In conclusion, we have built and tabulated an accurate

nonlocal and dynamical 2p2h exchange-correlation kernel
for TDDFT in the HEG, and we have shown that it can be
used for the calculation of dynamic structure factors in real
solids. The new kernel improves over existing approxima-
tions for the HEG, producing, at the same time, double-
plasmon and ghost-exciton features that, so far, have been
separately obtained through distinct approximations only
[15,42]. Moreover, our 2p2h kernel can be imported into
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real materials through a simple connector that is based on
the mean electronic density. This severe approximation
precludes its use in the present form in finite systems, and it
cannot describe band gaps or bound excitons in insulators.
However, it significantly improves the dynamic structure
factor of simple metals and semiconductors, including
double-plasmon resonances which are completely missed
by standard TDDFT approximations. This implies that it
could, in principle, also be used to improve many-body
perturbation theory based on the screened Coulomb inter-
action, or total energy calculations using the adiabatic
connection [5,6]. Finally, we advocate that the very good
quality of these results illustrates a general strategy that is
very promising, as it allows one to separate dynamical
correlation effects, which can be calculated and tabulated
once for all in the HEG [31], from electronic structure
features that are material specific but, in principle, easier to
deal with.
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